Advertisement

Role of Buffers in Protein Formulations

Published:November 25, 2016DOI:https://doi.org/10.1016/j.xphs.2016.11.014

      Abstract

      Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined.

      Keywords

      To read this article in full you will need to make a payment
      APhA Member Login
      APhA Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ugwu S.O.
        • Apte S.P.
        The effect of buffers on protein conformational stability.
        Pharm Technol. 2004; 28: 86-108
        • Chang B.S.
        • Hershenson S.
        Practical approaches to protein formulation development.
        in: Rational Design of Stable Protein Formulations Theory and Practice. Pharmaceutical Biotechnology. Vol. 13. Kluwer Academic/Plenum Publishers, New York2002: 1-25
        • Manning M.C.
        • Chou D.K.
        • Murphy B.M.
        • Payne R.W.
        • Katayama D.S.
        Stability of protein pharmaceuticals: an update.
        Pharm Res. 2010; 27: 544-575
        • Wang W.
        Instability, stabilization, and formulation of liquid protein pharmaceuticals.
        Int J Pharm. 1999; 185: 129-188
        • Cleland J.L.
        • Powell M.F.
        • Shire S.J.
        The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation.
        Crit Rev Ther Drug Carrier Syst. 1993; 10: 307-377
        • Kang J.
        • Lin X.
        • Penera J.
        Rapid formulation development for monoclonal antibodies.
        BioProcess Int. 2016; 14: 40
        • Nema S.
        • Washkuhn R.J.
        • Brendel R.J.
        Excipients and their use in injectable products.
        PDA J Pharm Sci Technol. 1997; 51: 166-171
        • Uchiyama S.
        Liquid formulations for antibody drugs.
        Biochim Biophys Acta. 2014; 1844: 2041-2052
        • Jeong S.H.
        Analytical methods and formulation factors to enhance protein stability in solution.
        Arch Pharm Res. 2012; 35: 1871-1886
        • Reijenga J.
        • van Hoof A.
        • van Loon A.
        • Teunissen B.
        Development of methods for the determination of pKa values.
        Anal Chem Insights. 2013; 8: 53-71
        • Burt C.T.
        • Yang M.
        • Koch R.L.
        NMR study of ionization of biological phosphates and imidazole in solutions and gels.
        Cryobiology. 1996; 33: 62-69
        • Stoll V.S.
        • Blanchard J.S.
        Buffers: principles and practice.
        Methods Enzymol. 2009; 463: 43-56
        • Blanchard J.S.
        Buffers for enzymes.
        Methods Enzymol. 1984; 104: 404-414
        • Ellis K.J.
        • Morrison J.F.
        Buffers of constant ion strength for studying pH-dependent processes.
        Methods Enzymol. 1982; 87: 405-426
        • Stoll V.S.
        • Blanchard J.S.
        Buffers: principles and practice.
        Methods Enzymol. 1990; 182: 24-38
        • Ferguson W.J.
        • Braunschweiger K.I.
        • Braunschweiger W.R.
        • et al.
        Hydrogen ion buffers for biological research.
        Anal Biochem. 1980; 104: 300-310
        • Good N.E.
        • Izawa S.
        Hydrogen ion buffers.
        Methods Enzymol. 1972; 24: 53-68
        • Goldberg R.N.
        • Kishore N.
        • Lennen R.M.
        Thermodynamic quantities for the ionization reactions of buffers.
        J Phys Chem Ref Data. 2002; 31: 231-369
        • Ristic M.
        • Rosa N.
        • Seabrook S.A.
        • Newman J.
        Formulation screening by differential scanning fluorimetry: how often does it work?.
        Acta Crystallograph F. 2015; 71: 1359-1364
        • Thiel T.
        • Liczkowski L.
        • Bissen S.T.
        New zwitterionic butanesulfonic acids that extend the alkaline range of four families of Good buffers: evaluation for use in biological systems.
        J Biochem Biophys Methods. 1998; 37: 117-129
        • LLC S-AC
        Buffer reference center 2016.
        (Available at:) (Accessed June 4, 2016)
        • Waterman K.C.
        • Adami R.C.
        • Alsante K.M.
        • et al.
        Stabilization of pharmaceuticals to oxidative degradation.
        Pharm Dev Technol. 2002; 7: 1-32
        • Gokarn Y.R.
        • Kras E.
        • Nodgaard C.
        • et al.
        Self-buffering antibody formulations.
        J Pharm Sci. 2008; 97: 3051-3066
        • Kolhe P.
        • Amend E.
        • Singh S.K.
        Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
        Biotechnol Prog. 2010; 26: 727-733
        • Urbansky E.T.
        • Schock M.R.
        Understanding, deriving, and computing buffer capacity.
        J Chem Educ. 2000; 77: 1640-1644
        • Okamoto H.
        • Mori K.
        • Ohtsuka K.
        • Ohuchi H.
        • Ishii H.
        Theory and computer programs for calculating solution pH, buffer formula, and buffer capacity for multiple component system at a given ionic strength and temperature.
        Pharm Res. 1997; 14: 299-302
        • Asuero A.G.
        • Michałowski T.
        Comprehensive formulation of titration curves for complex acid-base systems and its analytical implications.
        Crit Rev Anal Chem. 2011; 41: 151-187
        • Roy L.N.
        • Roy R.N.
        • Allen K.A.
        • Mehrhoff C.J.
        • Henson I.B.
        • Stegner J.M.
        Buffer standards for the physiological pH of the zwitterionic compounds of 3-(N-morpholino)propanesulfonic acid (MPOS) from T = (278.15 to 323.15).
        Korean J Chem Thermodyn. 2012; 47: 21-27
        • Roy R.N.
        • Roy L.N.
        • Ashkenazi S.
        • et al.
        Buffer standards for pH measurement of N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) for I=0.16 from 5 to 55 degrees C.
        J Solution Chem. 2009; 38: 449-458
        • Kandegedara A.
        • Rorabacher D.B.
        Noncomplexing tertiary amines as “better” buffers covering the range of pH 3-11. Temperature dependence of their acid dissociation constants.
        Anal Chem. 1999; 71: 3140-3144
        • Sieracki N.A.
        • Hwang H.J.
        • Lee M.K.
        • Garner D.K.
        • Lu Y.
        A temperature independent pH (TIP) buffer for biomedical biophysical applications at low temperatures.
        Chem Commun. 2008; 21: 823-825
        • Soriano A.N.
        • Cabahug D.I.V.
        • Li M.H.
        Thermophysical property characterization of tris(hydroxymethyl)aminomethane.
        J Chem Thermodyn. 2011; 43: 186-189
        • Reineke K.
        • Mathys A.
        • Knorr D.
        Shift in pH-value during thermal treatments in buffer solutions and selected foods.
        Int J Food Properties. 2011; 14: 870-881
        • Van Slyke D.D.
        On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration of the buffer solution.
        J Biol Chem. 1922; 52: 525-570
        • Bahrenburg S.
        • Karow A.R.
        • Garidel P.
        Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.
        Biotechnol J. 2015; 10: 610-622
        • Karow A.R.
        • Bahrenburg S.
        • Garidel P.
        Buffer capacity of biologics—from buffer salts to buffering by antibodies.
        Biotechnol Prog. 2013; 29: 480-492
        • Grimsley G.R.
        • Scholtz J.M.
        • Pace C.N.
        A summary of the measured pK values of the ionizable groups in folded proteins.
        Protein Sci. 2009; 18: 247-251
        • Nozaki Y.
        • Tanford C.
        Examination of titration behavior.
        Methods Enzymol. 1967; 11: 715-734
        • Thurlkill R.L.
        • Grimsley G.R.
        • Scholtz J.M.
        • Pace C.N.
        pK values of the ionizable groups in proteins.
        Protein Sci. 2006; 15: 1214-1218
        • Asuero A.G.
        Buffer capacity of a polyprotic acid: first derivative of the buffer capacity and pKa values of single and overlapping equilibria.
        Crit Rev Anal Chem. 2007; 37: 269-301
        • Christensen H.N.
        Proteins as buffers.
        Ann N Y Acad Sci. 1966; 133: 34-40
        • Voinescu A.E.
        • Bauduin P.
        • Pinna M.C.
        • Touraud D.
        • Ninham B.W.
        • Kunz W.
        Similarity of salt influences on the pH of buffers, polyelectrolytes, and proteins.
        J Phys Chem B. 2006; 110: 8870-8876
        • Cugia F.
        • Monduzzi M.
        • Ninham B.W.
        • Salis A.
        Interplay of ion specificity, pH, and buffers: insights from electrophoretic mobility and pH measurements of lysozyme solutions.
        RSC Adv. 2013; 3: 5882-5888
        • Lo Nostro P.
        • Ninham B.W.
        Hofmeister phenomena: an update on ion specificity in biology.
        Chem Rev. 2012; 112: 2286-2322
        • Bauduin P.
        • Nohmie F.
        • Touraud D.
        • Neueder R.
        • Kunz W.
        • Ninham B.W.
        Hofmeister specific-ion effects on enzymatic activity and buffer pH: horseradish peroxidase in citrate buffer.
        J Mol Liq. 2006; 123: 14-19
        • Gupta B.S.
        • Chen B.-R.
        • Lee M.-J.
        Solvation consequences of polymers PVP with biological buffers MES, MOPS, and MOPSO in aqueous solutions.
        J Chem Thermodyn. 2015; 91: 62-72
        • Manning M.C.
        • Patel K.
        • Borchardt R.T.
        Stability of protein pharmaceuticals.
        Pharm Res. 1989; 6: 903-918
        • Krishnamurthy R.
        • Manning M.C.
        The stability factor: importance in formulation development.
        Curr Pharm Biotechnol. 2002; 3: 361-371
        • Schelero N.
        • von Klitzing R.
        Correlation between specific ion adsorption at the air/water interface and long-range interactions in colloidal systems.
        Soft Matter. 2011; 7: 2936-2942
        • Norde W.
        My voyage of discovery to proteins in flatland… and beyond.
        Colloids Surf B: Biointerfaces. 2008; 61: 1-9
        • Salis A.
        • Monduzzi M.
        Not only pH. Specific buffer effects in biological systems.
        Curr Opin Colloid Interf Sci. 2016; 23: 1-9
        • Hari S.B.
        • Lau H.
        • Razinkov V.I.
        • Chen S.A.
        • Latypov R.F.
        Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
        Biochemistry. 2010; 49: 9328-9338
        • Casaz P.
        • Brousseau A.
        • Ozturk S.
        Development of a high-throughput formulation screening platform for monoclonal antibodies.
        Bioprocess Int. 2015; 13: 48
      1. Piros N. Cromwell M.E.M. Bishop S. Differential stability of a monoclonal antibody in acetate, succinate, citrate, and histidine buffer systems. American Chemical Society, New Orleans, LA2003 (225th National Meeting of the American Chemical Society)
        • Wyman Jr., J.
        Linked functions and reciprocal effects in hemoglobin: a second look.
        Adv Protein Chem. 1964; 19: 223-286
        • Ohtake S.
        • Kita Y.
        • Arakawa T.
        Interactions of formulation excipients with proteins in solution and in the dried state.
        Adv Drug Deliv Rev. 2011; 63: 1053-1073
        • Akers M.J.
        Excipient-drug interactions in parenteral formulations.
        J Pharm Sci. 2002; 91: 2283-2300
        • Kamerzell T.J.
        • Esfandiary R.
        • Joshi S.B.
        • Middaugh C.R.
        • Volkin D.B.
        Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development.
        Adv Drug Deliv Rev. 2011; 63: 1118-1159
        • Cimmperman P.
        • Baranauskienė L.
        • Jachimovičiūtė S.
        • et al.
        A quantitative model of thermal stabilization and destabilization of proteins by ligands.
        Biophys J. 2008; 96: 3222-3231
        • Mukerjea R.
        • McIntyre A.P.
        • Robyt J.F.
        Potent inhibition of starch-synthase by tris-type buffers is responsible for the perpetuation of the primer myth for starch biosynthesis.
        Carbohydr Res. 2012; 355: 28-34
        • Novaes L.C.D.
        • Mazzola P.G.
        • Pessoa A.
        • Penna T.C.V.
        Citrate and phosphate influence on green fluorescent protein thermal stability.
        Biotechnol Prog. 2011; 27: 269-272
        • Mizutani K.
        • Chen Y.
        • Yamashita H.
        • Hirose M.
        • Aibara S.
        Thermostabilization of ovotransferrin by anions for pasteurization of liquid egg white.
        Biosci Biotechnol Biochem. 2006; 70: 1839-1845
        • Mezzasalma T.M.
        • Kranz J.K.
        • Chan W.
        • et al.
        Enhancing recombinant protein quality and yield by protein stability profiling.
        J Biomol Screen. 2007; 12: 418-428
        • McPhail D.
        • Holt C.
        Effect of anions on the denaturation and aggregation of beta-lactoglobulin as measured by differential scanning microcalorimetry.
        Int J Food Sci Technol. 1999; 34: 477-481
        • Fayos R.
        • Pons M.
        • Millet O.
        On the origins of the thermostabilization of proteins induced by sodium phosphate.
        J Am Chem Soc. 2005; 127: 9690-9691
        • Ikeuchi Y.
        • Iwamura K.
        • Machi T.
        • Kakimoto T.
        • Suzuki A.
        Instability of F-actin in the absence of ATP: a small amount of myosin destabilizes F-actin.
        J Biochem. 1992; 111: 606-613
        • Gonzalez M.
        • Weiler S.
        • Ferretti J.A.
        • Ginsburg A.
        The vnd/NK-2 homeodomain: thermodynamics of reversible unfolding and DNA binding for wild-type and with residue replacements H52R and H52R/T56W in Helix III.
        Biochemistry. 2001; 40: 4923-4931
        • Durdenko E.V.
        • Saburova E.A.
        A special role of phosphate in the stability of lactate dehydrogenase against destruction by a polyelectrolyte.
        Russ J Bioorg Chem. 2012; 38: 367-375
      2. Burke DJ, Buckley SE, Lehrman SR, O'Connor BH, Callaway J, Phillips CP. Method for treating multiple sclerosis and Crohn's disease. US patent 8,815,236, issued 26 Aug 2014.

      3. Burke DJ, Buckley SE, Lehrman SR, O'Connor BH, Callaway J, Phillips CP. Immunoglobulin formulation and method of preparation thereof. US patent 8,900,577, issued 2 Dec 2014.

        • Bilaničová D.
        • Salis A.
        • Ninham B.W.
        • Monduzzi M.
        Specific ion effects on enzymatic activity in nonaqueous media.
        J Phys Chem B. 2008; 112: 12066-12072
        • Sears P.
        • Witte K.
        • Wong C.-H.
        The effect of counterion, water concentration, and stirring on the stability of subtilisin BPN' in organic solvents.
        J Mol Catal B. 1999; 6: 297-304
      4. Lu X, Chen B-L, Araya K, Okhamafe A. Antagonist anti-CD40 antibody pharmaceutical compositions. US patent 8,945,564, issued 3 Feb 2015.

        • Kochany J.
        • Lipczynskakochany E.
        Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by photolysis of H2O2.
        Chemosphere. 1992; 25: 1769-1782
        • White M.C.
        • Doyle A.G.
        • Jacobsen E.N.
        A synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H2O2.
        J Am Chem Soc. 2001; 123: 7194-7195
        • Fu Y.
        • Wu Y.
        • Wei Y.
        • Chen X.
        • Xu J.
        • Xu X.
        Development of a thermally stable formulation for L-asparaginase storage in aqueous conditions.
        J Mol Catal B. 2015; 122: 8-14
        • Goulet D.R.
        • Knee K.M.
        • King J.A.
        Inhibition of unfolding and aggregation of lens protein gamma D crystallin by sodium citrate.
        Exp Eye Res. 2011; 93: 371-381
        • Ohishi S.
        • Shimizu N.
        • Mihara K.
        • Imamoto Y.
        • Kataoka M.
        Light induces destabilization of photoactive yellow protein.
        Biochemistry. 2001; 40: 2854-2859
        • Kaushik J.K.
        • Bhat R.
        A mechanistic analysis of the increase in the thermal stability of proteins in aqueous carboxylic acid salt solutions.
        Protein Sci. 1999; 8: 222-233
        • Harinarayan C.
        • Skidmore K.
        • Kao Y.
        • Zydney A.L.
        • van Reis R.
        Small molecule clearance in ultrafiltration/diafiltration in relation to protein interactions: study of citrate binding to a Fab.
        Biotechnol Bioeng. 2009; 102: 1718-1722
        • Liu J.
        • Blasie C.A.
        • Shi S.
        • Joshi S.B.
        • Middaugh C.R.
        • Volkin D.B.
        Characterization and stabilization of recombinant human protein pentraxin (rhPTX-2).
        J Pharm Sci. 2013; 102: 827-841
        • Narhi L.O.
        • Philo J.S.
        • Sun B.
        • Chang B.S.
        • Arakawa T.
        Reversibility of heat-induced denaturation of the recombinant human megakaryocyte growth and development factor.
        Pharm Res. 1999; 16: 799-807
      5. Babuka SJ, Li M. Anti-botulinum antibody coformulations. US patent 8,821,879, issued 2 Sep 2014.

        • Katayama D.S.
        • Nayar R.
        • Chou D.K.
        • et al.
        Effect of buffer species on the thermally induced aggregation of interferon-tau.
        J Pharm Sci. 2006; 95: 1212-1226
        • Moody T.P.
        • Kingsbury J.S.
        • Durant J.A.
        • Wilson T.J.
        • Chase S.F.
        • Laue T.M.
        Valence and anion binding of bovine ribonuclease A between pH 6 and 8.
        Anal Biochem. 2005; 336: 243-252
        • Zhu L.
        • Zhang X.-J.
        • Wang L.-Y.
        • Zhou J.-M.
        • Perrett S.
        Relationship between stability of folding intermediates and amyloid formation for the yeast prion Ure2p: a quantitative analysis of the effects of pH and buffer system.
        J Mol Biol. 2003; 328: 235-254
        • Metrick M.A.
        • Temple J.E.
        • MacDonald G.
        The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.
        Biophys Chem. 2013; 184: 29-36
        • Taha M.
        • Lee M.J.
        Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: thermodynamic characterization.
        Phys Chem Chem Phys. 2010; 12: 12840-12850
        • Kim N.A.
        • An I.B.
        • Lim D.G.
        • et al.
        Effects of pH and buffer concentration on the thermal stability of etanercept using DSC and DLS.
        Biol Pharm Bull. 2014; 37: 808-816
        • Kopec J.
        • Schneider G.
        Comparison of fluorescence and light scattering based methods to assess formation and stability of protein-protein complexes.
        J Struct Biol. 2011; 175: 216-223
        • Gupta B.S.
        • Taha M.
        • Lee M.-J.
        Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.
        Phys Chem Chem Phys. 2015; 17: 1114-1133
        • Gupta B.S.
        • Taha M.
        • Lee M.-J.
        Interactions of bovine serum albumin with biological buffers, TES, TAPS, and TAPSO in aqueous solutions.
        Process Biochem. 2013; 48: 1686-1696
        • Salmannejad F.
        • Nafissi-Varcheh N.
        • Shafaati A.
        • Aboofazeli R.
        Study on the effect of solution conditions on heat-induced aggregation of human alpha interferon.
        Iranian J Pharm Res. 2014; 13: 27-34
        • Kameoka D.
        • Ueda T.
        • Imoto T.
        Effect of the conformational stability of the CH2 domain on the aggregation and peptide cleavage of a humanized IgG.
        Appl Biochem Biotechnol. 2011; 164: 642-654
        • El-Sayed A.S.A.
        • Abdel-Azeim S.
        • Ibrahim H.M.
        • et al.
        Biochemical stability and molecular dynamic characterization of Aspergillus fumigatus cystathionine γ-lyase in response to various reaction effectors.
        Enzyme Microb Technol. 2015; 81: 31-46
        • Rodriguez E.
        • Mullaney E.J.
        • Lei X.G.
        Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme.
        Biochem Biophys Res Commun. 2000; 268: 373-378
        • Sedlak E.
        • Stagg L.
        • Wittung-Stafshede P.
        Effect of Hofmeister ions on protein thermal stability: roles of ion hydration and peptide groups?.
        Arch Biochem Biophys. 2008; 479: 69-73
        • Timasheff S.N.
        Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated.
        Adv Protein Chem. 1998; 51: 355-432
        • Timasheff S.N.
        The control of protein stability and association by weak interactions with water: how do solvents affect these processes?.
        Annu Rev Biophys Biomol Struct. 1993; 22: 67-97
        • Gillespie R.
        • Nguyen T.
        • Macneil S.
        • Jones L.
        • Crampton S.
        • Vunnum S.
        Cation exchange surface-mediated denaturation of an aglycosylated immunoglobulin (IgG1).
        J Chromatogr A. 2012; 1251: 101-110
        • Chen B.L.
        • Arakawa T.
        • Hsu E.
        • Narhi L.O.
        • Tressel T.J.
        • Chien S.L.
        Strategies to suppress aggregation of recombinant keratinocyte growth-factor during liquid formulation development.
        J Pharm Sci. 1994; 83: 1657-1661
        • Chen B.L.
        • Arakawa T.
        Stabilization of recombinant human keratinocyte growth factor by osmolytes and salts.
        J Pharm Sci. 1996; 85: 419-422
        • Bottomley S.P.
        • Tew D.J.
        The citrate ion increases the conformational stability of α1-antitrypsin.
        Biochim Biophys Acta. 2000; 1481: 11-17
        • Chen B.L.
        • Arakawa T.
        • Morris C.F.
        • Kenney W.C.
        • Wells C.M.
        • Pitt C.G.
        Aggregation pathway of recombinant human keratinocyte growth-factor and its stabilization.
        Pharm Res. 1994; 11: 1581-1587
        • Mittal S.
        • Singh L.R.
        Denatured state structural property determines protein stabilization by macromolecular crowding: a thermodynamic and structural approach.
        PLoS One. 2013; 8: e78936
        • Rayfield W.J.
        • Roush D.J.
        • Chmielowski R.A.
        • Tugcu N.
        • Barakat S.
        • Cheung J.K.
        Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.
        Biotechnol Prog. 2015; 31: 765-774
        • Barnett G.V.
        • Razinkov V.I.
        • Kerwin B.A.
        • et al.
        Specific-ion effects on the aggregation mechanisms and protein-protein interactions for anti-streptavidin immunoglobulin gamma-1.
        J Phys Chem B. 2015; 119: 5793-5804
        • Barnett G.V.
        • Razinkov V.I.
        • Kerwin B.A.
        • Hillsley A.
        • Roberts C.J.
        Acetate- and citrate-specific ion effects on unfolding and temperature-dependent aggregation rates of anti-streptavidin IgG1.
        J Pharm Sci. 2016; 105: 1066-1073
        • Chavez B.K.
        • Agarabi C.D.
        • Read E.K.
        • Boyne II, M.T.
        • Khan M.A.
        • Brorson K.A.
        Improved stability of a model IgG3 by DoE-based evaluation of buffer formulations.
        Biomed Res Int. 2016; 2016: 1-8
      6. Del Rio A, Rinaldi G, Richard J. Formulations for TACI-immunoglobulin fusion proteins. US patent 8,637,021, issued 28 Jan 2014.

      7. Dimitrova MN, Mody N. Antibody formulations. US patent 8,754,195, issued 17 Jun 2014.

        • Krishnan S.
        • Chi E.Y.
        • Webb J.N.
        • et al.
        Aggregation of granulocyte colony stimulating factor under physiological conditions: characterization and thermodynamic inhibition.
        Biochemistry. 2002; 41: 6422-6431
        • Chi E.Y.
        • Krishnan S.
        • Randolph T.W.
        • Carpenter J.F.
        Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation.
        Pharm Res. 2003; 20: 1325-1336
        • Nicoud L.
        • Owczarz M.
        • Arosio P.
        • Morbidelli M.
        A multiscale view of therapeutic protein aggregation: a colloid science perspective.
        Biotechnol J. 2015; 10: 367-378
        • Quigley A.
        • Williams D.R.
        The second virial coefficient as a predictor of protein aggregation propensity: a self-interaction chromatography study.
        Eur J Pharm Biopharm. 2015; 96: 282-290
        • Roberts D.
        • Keeling R.
        • Tracka M.
        • et al.
        Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.
        Mol Pharm. 2015; 12: 179-193
        • Roberts C.J.
        • Nesta D.P.
        • Kim N.
        Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
        J Pharm Sci. 2013; 102: 3556-3566
        • Peterson S.E.
        • Wang S.
        • Ranheim T.
        • Owen K.E.
        Citrate-mediated disaggregation of rotavirus particles in RotaTeq vaccine.
        Antivir Res. 2006; 69: 107-115
        • Scott D.J.
        • Patel T.R.
        • Winzor D.J.
        A potential for overestimating the absolute magnitudes of second coefficients by small-angle X-ray scattering.
        Anal Biochem. 2013; 435: 159-165
        • Esfandiary R.
        • Parupudi A.
        • Casas-Finet J.
        • Gadre D.
        • Sathish H.
        Mechanism of reversible self-association of a monoclonal antibody: role of electrostatic and hydrophobic interactions.
        J Pharm Sci. 2015; 104: 577-586
        • Le Brun V.
        • Friess W.
        • Bassarab S.
        • Mühlau S.
        • Garidel P.
        A critical evaluation of self-interaction chromatography as a predictive tool for the assessment of protein-protein interactions in protein formulation development: a case study of a therapeutic monoclonal antibody.
        Eur J Pharm Biopharm. 2010; 75: 16-25
        • Le Brun V.
        • Friess W.
        • Schultz-Fademrecht T.
        • Mühlau S.
        • Garidel P.
        Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.
        Biotechnol J. 2009; 4: 1305-1319
        • Le Brun V.
        • Friess W.
        • Bassarab S.
        • Garidel P.
        Correlation of protein-protein interactions as assessed by affinity chromatography with colloidal stability: a case study with lysozyme.
        Pharm Dev Technol. 2010; 14: 421-430
        • Mao Y.
        • Yu L.
        • Yang R.
        • Ma C.
        • Qu L.
        • Harrington P.D.B.
        New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11-20.
        Talanta. 2016; 148: 380-386
        • Raut A.A.
        • Kalonia D.S.
        Liquid-liquid phase separation in a dual variable domain immunoglobulin protein solution: effect of formulation factors and protein-protein interactions.
        Mol Pharm. 2015; 12: 3261-3271
        • Maeda H.
        • Kato K.
        • Kasuga T.
        Adsorption behavior of proteins on calcium silicate hydrate in tris and phosphate buffer solutions.
        Mater Lett. 2016; 167: 112-114
        • Wang S.
        • Zhang N.
        • Hu T.
        • et al.
        Viscosity-lowering effects of amino acids and salts on highly concentrated solutions of two IgG1 monoclonal antibodies.
        Mol Pharm. 2015; 12: 4478-4487
        • McIlvaine T.C.
        A buffer solution for colorimetric comparison.
        J Biol Chem. 1921; 49: 183-186
        • Li G.
        • Kasha P.C.
        • Late S.
        • Banga A.K.
        Application of hanging drop technique to optimize human IgG formulations.
        J Pharm Pharmacol. 2009; 62: 125-131
      8. Michaelis U, Rudolph R, Winter G, Woog H. Aqueous pharmaceutical preparations of G-CSF with a long shelf life. US patent 5,919,757, issued 6 Jul 1999.

        • Glusker J.P.
        Citrate conformation and chelation: enzymatic implications.
        Acc Chem Res. 1990; 13: 345-352
        • Yin J.
        • Chu J.-W.
        • Ricci M.S.
        • Brems D.N.
        • Wang D.I.C.
        • Trout B.L.
        Effects of excipients on the hydrogen peroxide-induced oxidation of methionine residues in granulocyte colony-stimulating factor.
        Pharm Res. 2005; 22: 141-147
        • Wong A.G.
        • Wu C.
        • Hannaberry E.
        • Watson M.D.
        • Shea J.E.
        • Raleigh D.P.
        Analysis of the amyloidogenic potential of pufferfish (Taifugu rubripes) islet amyloid polypeptide highlights the limitations of Thioflavin-T assays and the difficulties in defining amyloidogenicity.
        Biochemistry. 2016; 55: 510-518
        • Kim N.A.
        • Song K.
        • Lim D.G.
        • et al.
        Basal buffer systems for a newly glycosylated recombinant human interferon-beta with biophysical stability and DoE approaches.
        Eur J Pharm Biopharm. 2015; 78: 177-189
        • Ablinger E.
        • Hellweger M.
        • Leitgeb S.
        • Zimmer A.
        Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.
        Int J Pharm. 2012; 436: 744-752
        • Seabrook S.A.
        • Newman J.
        High-throughput thermal scanning for protein stability: making a good technique more robust.
        ACS Comb Sci. 2013; 15: 387-392
        • Wu C.F.
        • Cha H.J.
        • Valdes J.J.
        • Bentley W.E.
        GFP-visualized immobilised enzymes: degradation of paraoxon via organophosphorus hydrolase in a packed column.
        Biotechnol Bioeng. 2002; 77: 212-218
      9. Gokarn YR, Kamerzell TJ, Li M, Cromwell M, Liu H. Antibody formulation. US patent 9,226,961, issued 5 Jan 2016.

      10. Hinderer W, Lubenau H. Method of treatment using stable liquid formulation of G-CSF. US patent 8,946,161, issued 3 Feb 2015.

        • Arakawa T.
        • Philo J.S.
        • Kita Y.
        Kinetic and thermodynamic analysis of thermal unfolding of recombinant erythropoietin.
        Biosci Biotechnol Biochem. 2001; 65: 1321-1327
        • Kameoka D.
        • Masuzaki E.
        • Ueda T.
        • Imoto T.
        Effect of buffer species on the unfolding and the aggregation of humanized IgG.
        J Biochem. 2007; 142: 383-391
      11. Sharma MK, Narasimhan CN, Gergich KJ, Kang SP. Stable formulations of antibodies to human programmed death receptor PD-1 and related treatments. US patent 9,220,776, issued 29 Dec 2015.

      12. Oliver CN, Shane E, Isaacs BS, Allan CB, Chang ST. Stabilized liquid anti-RSV antibody formulations. US patent 8,986,686, issued 24 Mar 2015.

      13. Ma X, Xiang J. High concentration antibody and protein formulations. US patent 8,613,919, issued 24 Dec 2013.

      14. Momm J, Wallny H-J. Antibody formulation. US patent 8,623,367, issued 7 Jan 2014.

      15. Ma X, Xiang J, Niu J. Anti-prolactin receptor antibody formulations. US patent 8,883,979, issued 11 Nov 2014.

      16. Liu J, Shire SJ. Reduced-viscosity concentrated protein formulations. US patent 8,703,126, issued 22 Apr 2014.

        • Stefaniu A.
        • Iulian O.
        Investigations of the properties of L-histidine in aqueous NaCl solutions at different temperatures.
        J Solution Chem. 2013; 42: 2384-2398
        • Warne N.W.
        Development of high concentration protein biopharmaceuticals: the use of platform approaches in formulation development.
        Eur J Pharm Biopharm. 2011; 78: 208-212
      17. Liu J, Shire SJ. High concentration antibody and protein formulations. US patent 8,961,964, issued 24 Feb 2015.

        • Chen B.
        • Bautista R.
        • Yu K.
        • Zapata G.A.
        • Mulkerrin M.G.
        • Chamow S.M.
        Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms.
        Pharm Res. 2003; 20: 1952-1960
      18. DeFilippis MR, Dobbins MA, Frank BH, Li S, Rebhun DM. Stable insulin formulations. US patent 6,551,992, issued 22 April 2003.

        • Gu L.C.
        • Erdös E.A.
        • VChiang H.-S.
        • et al.
        Stability of interleukin-1β (IL-1β) in aqueous solution: analytical methods, kinetics, products, and solution formulation implications.
        Pharm Res. 1991; 8: 480-490
        • Golab K.
        • Gburek J.
        • Juszczynska K.
        • Trziszka T.
        • Polanowski A.
        Stabilization of monomeric chicken egg white cystatin.
        Przemysl Chemiczny. 2012; 91: 741-744
        • Harrington J.P.
        Alteration of redox stability of hemoglobins A and S by biological buffers.
        Comp Biochem Physiol B Biochem Mol Biol. 1998; 119: 305-309
        • Reinsch H.
        • Spadiut O.
        • Heidingsfelder J.
        • Herwig C.
        Examining the freezing process of an intermediate bulk containing an industrially relevant protein.
        Enzyme Microb Technol. 2015; 71: 13-19
        • Beldarrain A.
        • Lopez-Lacomba J.L.
        • Furrazola G.
        • Barberia D.
        • Cortijo M.
        Thermal denaturation of human gamma-interferon. A calorimetric and spectroscopic study.
        Biochemistry. 1999; 38: 7865-7873
        • Kalisz H.M.
        • Hendle J.
        • Schmid R.D.
        Structural and biochemical properties of glycosylated and deglycosylated glucose oxidase from Penicillium amagasakiense.
        Appl Microbiol Biotechnol. 1997; 47: 502-507
        • Gupta B.S.
        • Taha M.
        • Lee M.-S.
        Superactivity of a-chymotrypsin with biological buffers, TRIS, TES, TAPS, and TAPSO in aqueous solutions.
        RSC Adv. 2014; 4: 51111-51116
        • Trewby W.
        • Livesey D.
        • Voïtchovsky K.
        Buffering agents modify the hydration landscape at charged interfaces.
        Soft Matter. 2016; 12: 2642-2651
        • Chirpich T.P.
        The effect of different buffers on terminal deoxynucleotidyl transferase activity.
        Biochim Biophys Acta. 1978; 518: 535-538
        • Hickel A.
        • Graupner M.
        • Lehner D.
        • Hermetter A.
        • Glatter O.
        • Griengl H.
        Stability of the hydroxynitrile lyase from Hevea brasiliensis: a fluorescence and dynamic light scattering study.
        Enzyme Microb Technol. 1997; 21: 361-366
        • Geueke B.
        • Hummel W.
        A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization.
        Enzyme Microb Technol. 2002; 31: 77-87
        • Tham S.-J.
        • Chang C.-D.
        • Huang H.-J.
        • Lee Y.-F.
        • Hunag T.-S.
        • Chang C.-C.
        Biochemical characterization of an acid phosphatase from Thermus thermophilus.
        Biosci Biotechnol Biochem. 2010; 74: 727-736
      19. Krause H-J, Baust L, Dickes M. Formulation of human antibodies for treating TNF alpha associated disorders. US patent 8,940,305, issued 27 Jan 2015.

        • Holyoak T.
        • Fenn T.D.
        • Wilson M.A.
        • Moulin A.G.
        • Ringe D.
        • Petsko G.A.
        Malonate: a versatile cryoprotectant and stabilizing solution for salt-grown macromolecular crystals.
        Acta Crystallographa D. 2003; 59: 2356-2358
        • McPherson A.
        A comparison of salts for the crystallization of macromolecules.
        Protein Sci. 2001; 10: 418-422
        • Alekseychyk L.
        • Su C.
        • Becker G.W.
        • Treuheit M.J.
        • Razinkov V.I.
        High-throughput screening and stability optimization of anti-streptavidin IgG1 and IgG2 formulations.
        J Biomol Screen. 2014; 19: 1290-1301
        • Lim J.Y.
        • Kim N.A.
        • Lim D.G.
        • Eun C.Y.
        • Choi D.
        • Jeong S.H.
        Biophysical stability of hyFc fusion protein with regards to buffers and various excipients.
        Int J Biol Macromol. 2016; 86: 622-629
        • Kim N.A.
        • Lim D.G.
        • Lim J.Y.
        • Kim K.H.
        • Jeong S.H.
        Fundamental analysis of recombinant human epidermal growth factor in solution with biophysical methods.
        Drug Dev Indus Pharm. 2015; 41: 300-306
        • Cao X.M.
        • Wang Z.Y.
        • Liu Y.W.
        • Wang C.X.
        • Tian Y.
        Effect of additive on the thermal denaturation of lysozyme analyzed by isoconversional method.
        Acta Chim Sinica. 2010; 68: 194-198
        • Haifeng L.
        • Yuwen L.
        • Xiaomin C.
        • Zhiyong W.
        • Cunxin W.
        Effects of sodium phosphate buffer on horseradish peroxidase thermal stability.
        J Therm Anal Calorim. 2008; 93: 569-574
        • Asad S.
        • Torabi S.-F.
        • Fathi-Roudsari M.
        • Ghaemi N.
        • Khajeh K.
        Phosphate buffer effects on the thermal stability and H2O2-resistance of horseradish peroxidase.
        Int J Biol Macromol. 2011; 48: 566-570
        • Salinas B.A.
        • Sathish H.A.
        • Shah A.U.
        • Carpenter J.F.
        • Randolph T.W.
        Buffer-dependent fragmentation of a humanized full-length monoclonal antibody.
        J Pharm Sci. 2010; 99: 2962-2974
        • Eschmann N.A.
        • Do T.D.
        • LePointe N.E.
        • et al.
        Tau aggregation propensity engrained in its solution state.
        J Phys Chem B. 2015; 119: 14421-14432
        • Milton N.G.N.
        • Harris J.R.
        Fibril formation and toxicity of the non-amyloidogenic rat amylin peptide.
        Micron. 2013; 44: 246-253
        • Santana H.
        • Gonzalez Y.
        • Campana P.T.
        • et al.
        Screening for stability and compatibility conditions of recombinant human epidermal growth factor for parenteral formulation: effect of pH, buffers, and excipients.
        Int J Pharm. 2013; 452: 52-62
        • Majorek K.A.
        • Kuhn M.L.
        • Chruszcz M.
        • Anderson W.F.
        • Minor W.
        Double trouble-buffer selection and His-tag presence may be responsible for nonreproducibility of biomedical experiments.
        Protein Sci. 2014; 23: 1359-1368
        • Joshi V.
        • Shivach T.
        • Kumar V.
        • Yadav N.
        • Rathore A.
        Avoiding antibody aggregation during processing: establishing hold times.
        Biotechnol J. 2014; 9: 1195-1205
        • Shubhada S.
        • Sundaram P.V.
        Borate-ion assisted stabilization of β-galactosidase from Aspergillus oryzae by polyhydroxy compounds in water miscible organic solvents.
        Enzyme Microb Technol. 1993; 15: 881-886
        • Ogawa T.
        • Miyajima M.
        • Wakiyama N.
        • Terada K.
        Effects of phosphate buffer in parenteral drugs on particle formation from glass vials.
        Chem Pharm Bull. 2013; 61: 539-545
        • Parkins D.A.
        • Lashmar U.T.
        The formulation of biopharmaceutical products.
        Pharm Sci Technol Today. 2000; 3: 129-137
        • Smith M.A.
        • Easton M.
        • Everett P.
        • et al.
        Specific cleavage of immunoglobulin G by copper ion.
        Int J Pept Protein Res. 1996; 48: 48-55
        • Ouellette D.
        • Alessandri L.
        • Piparia R.
        • et al.
        Elevated cleavage of human immunoglobulin gamma molecules containing a lambda light chain mediated by iron and copper.
        Anal Biochem. 2009; 389: 107-117
        • Rustandi R.R.
        • Wang Y.
        Use of CE-SDS gel for characterization of monoclonal antibody hinge region clipping due to copper and high pH stress.
        Electrophoresis. 2011; 32: 3078-3084
        • Glover Z.K.
        • Basa L.
        • Moor B.
        • Laurence J.S.
        • Sreedhara A.
        Metal ion specific interactions with mAbs: Part 1. pH and conformation modulate copper-mediated site-specific fragmentation of the IgG1 hinge region.
        mAbs. 2015; 7: 901-911
        • Vlasak J.
        • Ionescu R.
        Fragmentation of monoclonal antibodies.
        mAbs. 2011; 3: 253-263
        • Ren R.
        • Yang P.
        • Zheng W.
        • Hua Z.
        A simple copper(II)-L-histidine system for efficient hydrolytic cleavage of DNA.
        Inorg Chem. 2000; 39: 5454-5463
        • Yan B.
        • Boyd D.
        Breaking the light and heavy chain linkage of human immunoglobulin G1 (IgG1) by radical reactions.
        J Biol Chem. 2011; 286: 24674-24684
        • Yates Z.
        • Gunasekaran K.
        • Zhou H.
        • et al.
        Histidine residue mediates radical-induced hinge cleavage of human IgG1.
        J Biol Chem. 2010; 285: 18662-18671
        • Stroop S.D.
        • Conca D.M.
        • Lundgard R.P.
        • Renz M.E.
        • Peabody L.M.
        • Leigh S.D.
        Photosensitizers form in histidine buffer and mediate the photodegradation of a monoclonal antibody.
        J Pharm Sci. 2011; 100: 5142-5155
        • Welch K.D.
        • Davis T.Z.
        • Aust S.D.
        Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
        Arch Biochem Biophys. 2002; 397: 360-369
        • Hong J.
        • Lee E.
        • Carter J.C.
        • Masse J.A.
        • Oksanen D.A.
        Antioxidant-accelerated oxidative degradation: a case study of transition metal ion catalyzed oxidation in formulation.
        Pharm Dev Technol. 2004; 9: 171-179
        • Hovorka S.W.
        • Hong J.
        • Cleland J.L.
        • Schöneich C.
        Metal-catalyzed oxidation of human growth hormone: modulation by solvent-induced changes in protein conformation.
        J Pharm Sci. 2001; 90: 58-69
        • Bridgewater J.D.
        • Vachet R.W.
        Metal-catalyzed oxidation reactions and mass spectrometry: the roles of ascorbate and different oxidizing agents in determining Cu-protein binding sites.
        Anal Biochem. 2005; 341: 122-130
        • Kryndushkin D.
        • Rao V.A.
        Comparative effects of metal-catalyzed oxidizing systems on carbonylation and integrity of therapeutic proteins.
        Pharm Res. 2016; 33: 526-533
        • Zang L.
        • Carlage T.
        • Murphy D.
        • et al.
        Residual metals cause variability in methionine oxidation measurements in protein pharmaceuticals using LC-UV/MS peptide mapping.
        J Chromatogr B. 2012; 895-896: 71-75
        • Li S.H.
        • Schöneich C.
        • Wilson G.S.
        • Borchardt R.T.
        Chemical pathways of peptide degradation. 5. Ascorbic acid promotes rather than inhibits the oxidation of methionine to methionine sulfoxide in small model peptides.
        Pharm Res. 1993; 10: 1572-1579
        • Ogino T.
        • Okada S.
        Oxidative damage of bovine serum albumin and other enzyme proteins by iron-chelate complexes.
        Biochim Biophys Acta. 1995; 1245: 359-365
        • Abrahamson H.B.
        • Rezvani A.B.
        • Brushmiller J.G.
        Photochemical and spectroscopic studies of complexes of iron(III) with citric acid and other carboxylic acids.
        Inorg Chim Acta. 1994; 226: 117-127
        • Bin Y.
        • Jiang Z.
        • Xiang J.
        Side effects of Tris on the interactions of amyloid β-peptide with Cu2+: evidence for Tris-Aβ-Cu2+ ternary complex formation.
        Appl Biochem Biotechnol. 2015; 176: 56-65
        • Zawisza I.
        • Rozga M.
        • Poznanski J.
        • Bal W.
        Cu(II) complex formation by ACES buffer.
        J Inorg Biochem. 2013; 129: 58-61
        • Li S.H.
        • Schöneich C.
        • Borchardt R.T.
        Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization.
        Biotechnol Bioeng. 1995; 48: 490-500
        • Pierce D.A.
        • Rocco M.V.
        Trisodium citrate: an alternative to unfractionated heparin for hemodialysis catheter dwells.
        Pharmacotherapy. 2010; 30: 1150-1158
        • Arnold F.H.
        • Zhang J.H.
        Metal mediated protein stabilization.
        Trends Biotechnol. 1994; 12: 189-192
        • Lund H.
        • Kaasgaard S.G.
        • Skagerlind P.
        • Jorgensen L.
        • Jørgensen C.I.
        • van der Weert M.
        Protease and amylase stability in the presence of chelators used in laundry detergent applications: correlation between chelator properties and enzyme stability in liquid detergents.
        J Surfactants Deterg. 2012; 15: 265-276
        • Avanti C.
        A new strategy to stabilize oxytocin in aqueous solutions: 1. The effects of divalent metal ions and citrate buffer.
        AAPS J. 2011; 13: 284-290
        • Fabio K.
        • Curley K.
        • Guarneri J.
        • et al.
        Heat stable dry powder oxytocin formulations by oral inhalation.
        AAPS PharmSciTech. 2015; 16: 1299-1306
        • Avanti C.
        • Hinrichs W.L.J.
        • Casini A.
        • et al.
        The formation of oxytocin dimers is suppressed by the zinc-aspartate-oxytocin complex.
        J Pharm Sci. 2013; 102: 1734-1741
        • Ferreira C.M.H.
        • Pinto I.S.S.
        • Soares E.V.
        • Soares H.M.V.M.
        (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interactions with metal ions: a review.
        RSC Adv. 2015; 5: 30989-31003
        • Good N.E.
        • Winget G.D.
        • Winter W.
        • Connolly T.N.
        • Izawa S.
        • Singh R.M.M.
        Hydrogen ion buffers for biological research.
        Biochemistry. 1966; 5: 467
        • Taha M.
        • Quental M.V.
        • Correia I.
        • Freire M.G.
        • Coutinho J.A.P.
        Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids.
        Process Biochem. 2015; 50: 1158-1166
        • Patel K.
        • Borchardt R.T.
        Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model peptide.
        Pharm Res. 1990; 7: 703-711
        • Wakankar A.A.
        • Borchardt R.T.
        Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization.
        J Pharm Sci. 2006; 95: 2321-2336
        • Li B.
        • Borchardt R.T.
        • Topp E.M.
        • Vander Velde D.
        • Schowen R.L.
        Racemization of an asparagine residue during peptide deamidation.
        J Am Chem Soc. 2003; 125: 11486-11487
        • Li N.
        • Fort F.
        • Kessler K.
        • Wang W.
        Factors affecting cleavage at aspartic residues in model decapeptides.
        J Pharm Biomed Anal. 2009; 50: 73-78
        • Oliyai C.
        • Borchardt R.T.
        Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
        Pharm Res. 1993; 10: 95-102
        • Connolly B.D.
        • Tran B.
        • Moore J.M.R.
        • Sharma V.K.
        • Kosky A.
        Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure property relationship analyses.
        Mol Pharm. 2014; 11: 1345-1358
        • Pace A.L.
        • Wong R.L.
        • Zhang Y.T.
        • Kao Y.H.
        • Wang Y.J.
        Asparagine deamidation dependence on buffer type, pH, and temperature.
        J Pharm Sci. 2013; 102: 1712-1723
        • Girardet J.-M.
        • N'negue M.-A.
        • Egito A.S.
        • Campagna S.
        • Lagrange A.
        • Gaillard J.-L.
        Multiple forms of equine α-lactalbumin: evidence for N-glycosylated and deamidated forms.
        Int Dairy J. 2004; 14: 207-217
        • Capasso S.
        • Mazzarella L.
        • Zagari A.
        Deamidation via cyclic imide of asparaginyl peptide: dependence of salts, buffers, and organic solvents.
        Pept Res. 1991; 4: 234-238
        • Tyler-Cross R.
        • Schirch V.
        Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides.
        J Biol Chem. 1991; 266: 22549-22556
        • Hao P.
        • Ren Y.
        • Datta A.
        • Tam J.P.
        • Sze S.K.
        Evaluation of the effect of trypsin digest buffers on artificial deamidation.
        J Proteome Res. 2015; 14: 1308-1314
        • Goolcharran C.
        • Stauffer L.L.
        • Cleland J.L.
        • Borchardt R.T.
        The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides.
        J Pharm Sci. 2000; 89: 818-825
        • Tomizawa H.
        • Yamada H.
        • Wada K.
        • Imoto T.
        Stabilization of lysozyme against irreversible inactivation by suppression of chemical reactions.
        J Biochem. 1995; 117: 635-640
        • Zheng J.Y.
        • Janis L.J.
        Influence of pH, buffer species, and storage temperature on the physicochemical stability of a humanized monoclonal antibody LA298.
        Int J Pharm. 2006; 308: 46-51
        • Son K.
        • Kwon C.
        Stabilization of human epidermal growth factor (hEGF) in aqueous solutions.
        Pharm Res. 1995; 12: 451-454
        • Kori Y.
        • Patel R.
        • Neill A.
        • Liu H.
        A conventional procedure to reduce Asn deamidation artifacts during trypsin peptide mapping.
        J Chromatogr B. 2016; 1009-1010: 107-113
        • Dick Jr., L.W.
        • Qiu D.
        • Wong R.B.
        • Cheng K.-C.
        Isomerization in the CDR2 of a monoclonal antibody: binding analysis and factors that influence the isomerization rate.
        Biotechnol Bioeng. 2010; 105: 515-523
        • Dick Jr., L.W.
        • Kim C.
        • Qiu D.
        • Cheng K.-C.
        Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides.
        Biotechnol Bioeng. 2007; 97: 544-553
        • Eng M.
        • Ling V.
        • Briggs J.A.
        • et al.
        Formulation development and primary degradation pathways for recombinant human nerve growth factor.
        Anal Chem. 1997; 69: 4184-4190
        • Capasso S.
        • Vergara A.
        • Mazzarella L.
        Mechanism of 2,5-dioxopiperazine formation.
        J Am Chem Soc. 1998; 120: 1990-1995
        • Goolcharran C.
        • Borchardt R.T.
        Kinetics of diketopiperazine formation using model peptides.
        J Pharm Sci. 1998; 87: 283-288
        • Grady J.N.
        • Chasteen N.D.
        • Harris D.C.
        Radical from “Good's” buffers.
        Anal Biochem. 1988; 173: 111-115
        • Van Eden M.E.
        • Aust S.D.
        The consequences of hydroxyl radical formation on the stoichiometry and kinetics of ferrous iron oxidation by human apoferritin.
        Free Radic Biol Med. 2001; 31: 1007-1017
        • Zbikowska H.M.
        • Nowak P.
        • Wachowicz B.
        The role of ascorbate and histidine in fibrinogen protection against changes following exposure to a sterilizing dose of gamma-irradiation.
        Blood Coagul Fibrinolysis. 2007; 18: 669-676
        • Liu S.
        • Ellars C.E.
        • Edwards D.S.
        Ascorbic acid: useful as a buffer agent and radiolytic stabilizer for metelloradiopharmaceuticals.
        Bioconj Chem. 2003; 14: 1052-1056
        • Ban H.
        • Nagano M.
        • Gavrilyuk J.
        • Hakamata W.
        • Inokuma T.
        • Barbas III, C.F.
        Facile and stabile linkages through tyrosine: conjugation strategies with the tyrosine-click reaction.
        Bioconjug Chem. 2013; 24: 520-532
        • Gagliardi L.G.
        • Tascon M.
        • Castells C.B.
        Effect of temperature on acid-base equilibria in separation techniques.
        Analytica Chim Acta. 2015; 889: 35-57
        • Cummings L.J.
        • Snyder M.A.
        • Brisack K.
        Protein chromatography on hydroxyapatite columns.
        Methods Enzymol. 2009; 463: 387-404
        • Kang X.Z.
        • Kutzko J.P.
        • Hayes M.L.
        • Frey D.D.
        Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.
        J Chromatogr A. 2013; 1283: 89-97
        • Luo H.
        • Macapagal N.
        • Newell K.
        • et al.
        Effects of salt-induced reversible self-association on the elution behavior of a monoclonal antibody in cation-exchange chromatography.
        J Chromatogr A. 2014; 1362: 186-193
        • Geng X.L.
        • Tolkach A.
        • Otte J.
        • Ipsen R.
        Pilot-scale purification of α-lactalbumin from enriched whey protein concentrate by anion-exchange chromatography and ultrafiltration.
        Dairy Sci Technol. 2016; 95: 353-368
        • Vajda J.
        • Weber D.
        • Stefaniak S.
        • Hundt B.
        • Rathfelder T.
        • Mueller E.
        Mono- and polyprotic buffer systems in anion exchange chromatography of influenza virus particles.
        J Chromatogr A. 2016; 1448: 73-80
        • Kroner F.
        • Hubbuch J.
        Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.
        J Chromatogr A. 2013; 1285: 78-87
        • Müller E.
        • Vajda J.
        • Josic D.
        • Schröder T.
        • Dabra R.
        • Frey T.
        Mixed electrolytes in hydrophobic interaction chromatography.
        J Separation Sci. 2013; 36: 1327-1334
        • Zhang J.G.
        • Burman S.
        • Gunturi S.
        • Foley J.P.
        Method development and validation of capillary sodium dodecyl sulfate gel electrophoresis for the characterization of a monoclonal antibody.
        J Pharm Biomed Anal. 2010; 53: 1479-1490
        • McNay J.L.M.
        • O'Connell J.P.
        • Fernandez E.J.
        Protein unfolding during reversed phase chromatography: II. Role of salt type and ionic strength.
        Biotechnol Bioeng. 2001; 76: 233-240
        • Ishihara T.
        • Hosono M.
        Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies.
        J Chromatogr B. 2015; 995-996: 107-114
        • Nascimento A.
        • Rosa S.A.S.L.
        • Mateus M.
        • Azevedo A.M.
        Polishing of monoclonal antibodies through convective flow devices.
        Separation Purif Technol. 2014; 132: 593-600
        • Craig D.B.
        • Bayaraa B.
        • Lee D.M.
        • Charleton J.
        Effect of induction temperature and partial thermal denaturation on the catalytic and electrophoretic heterogeneity of β-galactosidase from two Escherichia coli strains.
        J Liquid Chromatogr Relat Tech. 2013; 36: 2944-2959
        • Walhagen K.
        • Huber M.I.
        • Hennessy T.P.
        • Hearn M.T.W.
        On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.
        Biopolymers. 2003; 71: 429-453
        • Fling S.P.
        • Gregerson D.S.
        Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea.
        Anal Biochem. 1986; 155: 83-88
        • Agon V.V.
        • Bubb W.A.
        • Wright A.
        • Hawkins C.L.
        • Davies M.J.
        Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides.
        Free Radic Biol Med. 2006; 40: 698-710
        • Tomita M.
        • Irie M.
        • Ukita T.
        Sensitized photooxidation of histidine and its derivatives. Products and mechanism of reaction.
        Biochemistry. 1969; 8: 5149-5160
        • Wang C.
        • Yamniuk A.
        • Dai J.
        • et al.
        Investigation of a degradant in a biologics formulation buffer containing L-histidine.
        Pharm Res. 2015; 32: 2625-2635
        • Wang C.
        • Chen S.
        • Brailsford J.A.
        • Yamniuk A.P.
        • Tymiak A.A.
        • Zhang Y.
        Characterization and quantification of histidine degradation in therapeutic protein formulations by size exclusion-hydrophilic interaction two dimensional-liquid chromatography with stable-isotope labeling mass spectrometry.
        J Chromatogr A. 2015; 1426: 133-139
        • Valliere-Doulass J.F.
        • Connell-Crowley L.
        • Jensen R.
        • et al.
        Photochemical degradation of citrate buffers leads to covalent acetonation of recombinant protein therapeutics.
        Protein Sci. 2010; 19: 2152-2163
        • Song Y.
        • Schowen R.L.
        • Borchardt R.T.
        • Topp E.M.
        Formaldehyde production by tris buffer in peptide formulations at elevated temperature.
        J Pharm Sci. 2001; 90: 1198-1203
        • Mason B.D.
        • McCracken M.
        • Bures E.J.
        • Kerwin B.A.
        Oxidation of free L-histidine by tert-butylhydroperoxide.
        Pharm Res. 2010; 27: 447-456
        • Lewisch S.A.
        • Levine R.L.
        Determination of 2-oxohistidine by amino acid analysis.
        Anal Biochem. 1995; 231: 440-446
        • Bridgewater J.D.
        • Srikanth R.
        • Lim J.
        • Vachet R.W.
        The effect of histidine oxidation on the dissociation patterns of peptide ions.
        J Am Soc Mass Spectrom. 2007; 18: 553-562
        • Hicks M.
        • Gebicki J.M.
        Rate constants for reaction of hydroxyl radicals with Tris, Tricine, and HEPES buffers.
        FEBS Lett. 1986; 199: 92-94
        • Wang W.
        • Ignatius A.A.
        • Thakkar S.V.
        Impact of residual impurities and contaminants on protein stability.
        J Pharm Sci. 2014; 103: 1315-1330
        • Zhao G.H.
        • Chasteen N.D.
        Oxidation of Good's buffers by hydrogen peroxide.
        Anal Biochem. 2006; 349: 262-267
        • Kirsch M.
        • Lomonosova E.E.
        • Korth H.-G.
        • Sustmann R.
        • de Groot H.
        Hydrogen peroxide formation by reaction of peroxynitrite with HEPES and related tertiary amines.
        J Biol Chem. 1998; 273: 12716-12724
        • Shiraishi H.
        • Kataoka M.
        • Morita Y.
        • Umemoto J.
        Interactions of hydroxyl radicals with tris(hydroxymethyl) aminomethane and Good's buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde.
        Free Radic Res Commun. 1993; 19: 315-321
        • Poole R.A.
        • Kasper P.T.
        • Jiskoot W.
        Formation of amide- and imide-linked degradation products between the peptide drug oxytocin and citrate in citrate-buffered formulations.
        J Pharm Sci. 2011; 100: 3018-3022
        • Chumsae C.
        • Zhou L.L.
        • Shen Y.
        • et al.
        Discovery of a chemical modification by citric acid in a recombinant monoclonal antibody.
        Anal Chem. 2014; 86: 8932-8936
        • Gokarn Y.R.
        • Kosky A.
        • Kras E.
        • McAuley A.
        • Remmele Jr., R.L.
        Excipients for protein drugs.
        in: Katdare A. Chaubal M.V. Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems. Informa Healthcare USA, Inc., New York2006: 291-331
        • Valliere-Doulass J.F.
        • Lewis P.
        • Salas-Solano O.
        • Jiang S.
        Solid-state mAbs and ADCs subjected to heat-stress stability conditions can be covalently modified with buffer and excipient molecules.
        J Pharm Sci. 2015; 104: 652-665
        • Trissel L.A.
        Handbook on Injectable Drugs.
        2nd ed. Elsevier/North-Holland Biomedical Press, Amsterdam1980: 607
        • Garidel P.
        • Pevestorf B.
        • Bahrenburg S.
        Stability of buffer-free freeze-dried formulations: a feasibility study of a monoclonal antibody at high protein concentrations.
        Eur J Pharm Biopharm. 2015; 97: 125-139
      20. Krause H-J, Baust L, Dickes M. Formulations of human antibodies for treating TNF alpha associated disorders. US patent 8,932,591; issued January 13, 2015.

      21. Krause H-J, Baust L, Dickes M. Formulations of human antibodies for treating TNF alpha associated disorders. US patent 8,911,741; issued December 16, 2014.

      22. Zeng L, Mitra R, Rossi EA, Hansen HJ, Goldenberg DM. Stable compositions of high-concentration allotype-selected antibodies for small-volume administration. US patent 9,180,205; issued November 10, 2015.

        • Ruiz L.
        • Aroche K.
        • Reyes N.
        Aggregation of recombinant human interferon alpha 2b in solution: technical note.
        AAPS PharmSciTech. 2006; 7: E1-E5
      23. Zeng L, Mitra R, Rossi EA, Hansen HJ, Goldenberg DM. Ultrafiltration concentration of allotype selected antibodies for small-volume administration. US patent 8,658,773; issued February 25, 2014.

        • Whiting G.C.
        Investigation of McIlvaine's buffer solutions.
        Chem Industry. 1966; : 1030
        • Hill J.N.S.
        Investigation of McIlvaine's buffer solutions.
        Chem Industry. 1961; : 824
        • Malpiedi L.P.
        • Nerli B.B.
        • Taqueda M.E.S.
        • Abdalla D.S.P.
        • Pessoa A.
        Optimized extraction of a single-chain variable fragment of antibody using aqueous micellar two-phase systems.
        Protein Exp Purif. 2015; 111: 53-60
        • Jones-Braun L.J.
        • Jezek J.
        • Peterson S.
        • et al.
        Characterization of a thermostable hepatitis B vaccine formulation.
        Vaccine. 2009; 27: 4609-4614
        • Jezek J.
        • Chen D.
        • Watson L.
        • et al.
        A heat-stable hepatitis B vaccine formulation.
        Hum Vaccin. 2009; 5: 529-535
      24. Dix DB, Tang X. Stabilized formulations containing anti-interleukin-4 receptor (IL-4R) antibodies. US patent 9,238,692; issued January 19, 2016.

      25. Dix DB, Tang X. Stabilized formulations containing anti-interleukin-4 receptor (IL-4R) antibodies. US patent 8,945,559; issued February 3, 2015.

      26. Andya J, Gwee SC, Liu J, Shen Y. Method of treating cancer with a pharmaceutical formulation comprising a HER2 antibody. US patent 9,017,671; issued April 28, 2015.

        • van den Berg L.
        • Rose D.
        Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: the reciprocal system KH2PO4-Na2HPO4.
        Arch Biochem Biophys. 1959; 81: 319-329
        • van den Berg L.
        The effect of addition of sodium and potassium chloride to the reciprocal system: KH2PO4-Na2HPO4-H2O on pH and composition during freezing.
        Arch Biochem Biophys. 1959; 84: 305-315
        • Bhatnagar B.S.
        • Bogner R.H.
        • Pikal M.J.
        Protein stability during freezing: separation of stresses and mechanisms of protein stabilization.
        Pharm Dev Technol. 2007; 12: 505-523
        • Williams-Smith D.L.
        • Bray R.C.
        • Barber M.J.
        • Tsopanakis A.D.
        • Vincent S.P.
        Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic resonance spectroscopy.
        Biochem J. 1977; 167: 593-600
        • Pikal-Cleland K.A.
        • Cleland J.L.
        • Anchordoquy T.J.
        • Carpenter J.F.
        Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
        J Pharm Sci. 2002; 91: 1969-1979
        • Pikal-Cleland K.A.
        • Rodriguez-Hornedo N.
        • Amidon G.L.
        • Carpenter J.F.
        Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
        Arch Biochem Biophys. 2000; 384: 398-406
        • Gómez G.
        • Pikal M.J.
        • Rodriguez-Hornedo N.
        Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions.
        Pharm Res. 2001; 18: 90-97
        • Sarciaux J.M.
        • Mansour S.
        • Hageman M.J.
        • Nail S.L.
        Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
        J Pharm Sci. 1999; 88: 1354-1361
        • Anchordoquy T.J.
        • Carpenter J.F.
        Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state.
        Arch Biochem Biophys. 1996; 332: 231-238
        • Wu S.L.
        • Leung D.
        • Tretyakov L.
        • Hu J.
        • Guzzetta A.
        • Wang Y.J.
        The formation and mechanism of multimerization in a freeze-dried peptide.
        Int J Pharm. 2000; 200: 1-16
        • Roessl U.
        • Humi S.
        • Leitgeb S.
        • Nidetzky B.
        Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.
        Biotechnol J. 2015; 10: 1390-1399
        • Amorij J.-P.
        • Meulenaar J.
        • Hinrichs W.L.J.
        • et al.
        Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemaglutinin during freezing and freeze-drying.
        Vaccine. 2007; 25: 6447-6457
        • Croyle M.A.
        • Roesseler B.J.
        • Davidson B.L.
        • Hilfinger J.M.
        • Amidon G.L.
        Factors that influence stability of recombinant adenoviral preparations for human gene therapy.
        Pharm Dev Technol. 1998; 3: 373-383
        • Sundaramurthi P.
        • Shalaev E.
        • Suryanarayanan R.
        “pH swing” in frozen solutions-consequence of sequential crystallization of buffer components.
        J Phys Chem Lett. 2010; 1: 265-268
        • Sundaramurthi P.
        • Shalaev E.
        • Suryanarayanan R.
        Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions.
        J Phys Chem B. 2010; 114: 4915-4923
        • Sundaramurthi P.
        • Suryanarayanan R.
        The effect of crystallizing and non-crystallizing cosolutes on succinate buffer crystallization and the consequent pH shifts in frozen solutions.
        Pharm Res. 2011; 28: 374-385
        • Sundaramurthi P.
        • Suryanarayanan R.
        Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.
        J Phys Chem B. 2011; 115: 7154-7164
        • Sundaramurthi P.
        • Suryanarayanan R.
        Predicting the crystallization propensity of carboxylic acid buffers in frozen systems: relevance to freeze-drying.
        J Pharm Sci. 2011; 100: 1288-1293
        • Varshney D.B.
        • Kumar S.
        • Shalaev E.Y.
        • et al.
        Glycine crystallization in frozen and freeze-dried systems: effect of pH and buffer concentration.
        Pharm Res. 2007; 24: 593-604
        • Bujacz G.
        • Wrzesniewska B.
        • Bujacz A.
        Cryoprotection properties of salts of organic acids: a case study for a tetragonal crystal of HEW lysozyme.
        Acta Crystallogr D. 2010; 66: 789-796
        • Strambini G.B.
        • Gonnelli M.
        Specific ion effects on the stability of azurin in ice.
        J Phys Chem B. 2008; 112: 10255-10263
        • Chang B.S.
        • Randall C.S.
        Use of subambient thermal analysis to optimize protein lyophilization.
        Cryobiology. 1992; 29: 632-656
        • Akers M.J.
        • Milton N.
        • Byrn S.R.
        • Nail S.L.
        Glycine crystallization during freezing: the effects of salt form, pH, and ionic strength.
        Pharm Res. 1995; 12: 1457-1461
        • Harnkarnsujarit N.
        • KNakajima M.
        • Kawai K.
        • Watanabe M.
        • Suzuki T.
        Thermal properties of freeze-concentrated sugar-phosphate solutions.
        Food Biophys. 2014; 9: 213-218
        • Kawai K.
        • Suzuki T.
        Effect of tetrasodium tripolyphosphate on the freeze-concentrated glass-like transition temperature of sugar aqueous solutions.
        CryoLetters. 2006; 27: 107-114
        • Mazzobre M.F.
        • Longinotti M.P.
        • Corti H.R.
        • Buera M.P.
        Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.
        Cryobiology. 2001; 43: 199-210
        • Nesarikar V.V.
        • Nassar M.N.
        Effect of cations and anions on glass transition temperatures in excipient solutions.
        Pharm Dev Technol. 2007; 12: 259-264
        • Her L.M.
        • Deras M.
        • Nail S.L.
        Electrolyte-induced changes in glass transition temperatures of freeze-concentrated solutes.
        Pharm Res. 1995; 12: 768-772
        • Izutsu K.
        • Aoyagi N.
        Effect of inorganic salts on crystallization of poly(ethylene glycol) in frozen solutions.
        Int J Pharm. 2005; 288: 101-108
        • Izutsu K.
        • Shigeo K.
        Phase separation of polyelectrolytes and non-ionic polymers in frozen solutions.
        Phys Chem Chem Phys. 2000; 2: 123-127
        • Mi Y.
        • Wood G.
        • Thoma L.
        Cryoprotection mechanisms of polyethylene glycols on lactate dehydrogenase during freeze-thawing.
        AAPS J. 2004; 6: e45-e54
        • Piedmonte D.M.
        • Hair A.
        • Baker P.
        • et al.
        Sorbitol crystallization-induced aggregation in frozen mAb formulations.
        J Pharm Sci. 2015; 104: 686-697
        • Jameel F.
        • Patro S.Y.
        Impact of formulations for optimizing lyophilization process development.
        Am Pharm Rev. 2005; 8: 46
        • Badawy S.I.F.
        • Hussain M.A.
        Microenvironmental pH modulation in solid dosage forms.
        J Pharm Sci. 2007; 96: 948-959
        • Lam X.M.
        • Costantino H.R.
        • Overcashier D.E.
        • Nguyen T.H.
        • Hsu C.C.
        Replacing succinate with glycolate buffer improves the stability of lyophilized interferon-gamma.
        Int J Pharm. 1996; 142: 85-95
        • Al-Hussein A.
        • Gieseler H.
        Investigation of histidine stabilizing effects on LDH during freeze-drying.
        J Pharm Sci. 2013; 102: 813-826
        • Chang B.S.
        • Reeder G.
        • Carpenter J.F.
        Development of a stable freeze-dried formulation of recombinant human interleukin-1 receptor antagonist.
        Pharm Res. 1996; 13: 243-248
        • Hassett K.J.
        • Cousins M.C.
        • Rabia L.A.
        • et al.
        Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.
        Eur J Pharm Biopharm. 2013; 85: 279-286
        • Capolongo A.
        • Barresi A.A.
        • Rovero G.
        Freeze-drying of lignin peroxidase: influence of lyoprotectants on enzyme activity and stability.
        J Chem Technol Biotechnol. 2002; 78: 56-63
        • Ohtake S.
        • Schebor C.
        • Palecek S.P.
        • de Pablo J.J.
        Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures.
        Pharm Res. 2004; 21: 1615-1621
        • Izutsu K.
        • Aoyagi N.
        • Kojima S.
        Protection of protein secondary structure by saccharides of different molecular weights during freeze-drying.
        Chem Pharm Bull. 2004; 52: 199-203
        • Eriksson J.H.C.
        • Hinrichs W.L.J.
        • de Jong G.J.
        • Somsen G.W.
        • Frijlink H.W.
        Investigations into the stabilization of drugs by sugar glasses: III. The influence of various high-pH buffers.
        Pharm Res. 2003; 20: 1437-1443
        • Weng L.
        • Elliott G.D.
        Distinctly different glass transition behaviors of trehalose mixed with Na2HPO4 or NaH2PO4: evidence for its molecular origin.
        Pharm Res. 2015; 32: 2217-2228
        • Weng L.
        • Vijayaraghavan R.
        • MacFarlane D.R.
        • Elliott G.D.
        Application of the Kwei equation to model the Tg behavior of binary blends of sugars and salts.
        Cryobiology. 2014; 68: 155-158
        • Kets E.P.W.
        • IJpelaar P.J.
        • Hoekstra F.A.
        • Vromans H.
        Citrate increases the glass transition temperature of vitrified sucrose preparations.
        Cryobiology. 2004; 48: 46-54
        • Wolkers W.F.
        • Oldendorf H.
        • Tablin F.
        • Crowe J.H.
        Preservation of dried liposomes in the presence of sugar and phosphate.
        Biochim Biophys Acta. 2004; 1661: 125-134
        • te Booy M.P.W.M.
        • de Ruiter R.A.
        • de Meere A.L.J.
        Evaluation of the physical stability of freeze-dried sucrose-containing formulations by differential scanning calorimetry.
        Pharm Res. 1992; 9: 109-114
        • Fitzpatrick S.
        • Saklatvala R.
        Understanding the physical stability of freeze dried dosage forms from the glass transition temperature of the amorphous components.
        J Pharm Sci. 2003; 92: 2504-2510
        • Izutsu K.
        • Kojima S.
        Excipient crystallinity and its protein-structure-stabilizing effect during freeze-drying.
        J Pharm Pharmacol. 2002; 54: 1033-1039
        • Izutsu K.
        • Yomata C.
        • Aoyagi N.
        Inhibition of mannitol crystallization in frozen solutions by sodium phosphates and citrates.
        Chem Pharm Bull. 2007; 55: 565-570
        • Izutsu K.
        • Kadoya S.
        • Yomota C.
        • Kawanishi T.
        • Yonemachi E.
        • Terada K.
        Stabilization of protein structure in freeze-dried amorphous organic acid buffer salts.
        Chem Pharm Bull. 2009; 57: 1231-1236
        • Izutsu K.
        • Kadoya S.
        • Yomota C.
        • Kawanishi T.
        • Yonemochi E.
        • Terada K.
        Freeze-drying of proteins in glass solids formed by basic amino acids and dicarboxylic acids.
        Chem Pharm Bull. 2009; 57: 43-48
        • Hubbard A.
        • Bevan S.
        • Matejtschuk P.
        Impact of residual moisture and formulation on factor VIII and factor V recovery in lyophilized plasma reference materials.
        Anal Bioanal Chem. 2007; 387: 2503-2507
        • Tian F.
        • Middaugh C.R.
        • Offerdahl T.
        • Munson E.
        • Sane S.
        • Rytting J.H.
        Spectroscopic evaluation of the stabilization of humanized monoclonal antibodies in amino acid formulations.
        Int J Pharm. 2007; 335: 20-31
        • Tian F.
        • Sane S.
        • Rytting J.H.
        Calorimetric investigation of protein/amino acid interactions in the solid state.
        Int J Pharm. 2006; 310: 175-186
        • Kerc J.
        • Srcic S.
        Thermal analysis of glassy pharmaceuticals.
        Thermochim Acta. 1995; 248: 81-95
        • Craig D.Q.M.
        • Royall P.G.
        • Kett V.L.
        • Hopton M.L.
        The relevance of the amorphous state to pharmaceutical dosage forms: glassy drug and freeze-dried systems.
        Int J Pharm. 1999; 179: 179-207
        • Skrabanja A.T.P.
        • De Meere A.L.J.
        • De Ruiter R.A.
        • van den Oetelaar P.J.M.
        Lyophilization of biotechnology products.
        PDA J Pharm Sci Technol. 1994; 48: 311-317
        • Elder D.P.
        • Kuentz M.
        • Holm R.
        Pharmaceutical excipients: quality, regulatory and biopharmaceutical considerations.
        Eur J Pharm Sci. 2016; 87: 88-99
        • Strauss J.
        • Greeff O.B.W.
        Excipient-related adverse drug reactions: a clinical approach.
        Curr Allergy Clin Immunol. 2015; 28: 24-27
        • Neubig R.R.
        Mind your salts: when the inactive constituent isn't.
        Mol Pharmacol. 2010; 78: 558-559
        • Thackaberry E.A.
        Non-clinical toxicological considerations for pharmaceutical salt selection.
        Exp Opin Drug Metab Toxicol. 2012; 8: 1419-1433
        • Miljanich G.
        • Rauck R.
        • Saulino M.
        Spinal mechanisms of pain and analgesia.
        Pain Pract. 2013; 13: 114-130
        • Brazeau G.A.
        • Cooper B.
        • Svetic K.A.
        • Smith C.L.
        • Gupta P.
        Current perspectives on pain upon injection of drugs.
        J Pharm Sci. 1998; 87: 667-677
        • Frenken L.A.M.
        • van Lier H.J.J.
        • Gerlag P.G.G.
        • den Hartog M.
        • Koene R.A.P.
        Assessment of pain after subcutaneous injection of erythropoietin in patients receiving haemodialysis.
        Br Med J. 1991; 303: 288
        • Frenken L.A.M.
        • Vanlier H.J.J.
        • Jordans J.G.M.
        • et al.
        Identification of the component part in a epoetin alfa preparation that causes pain after subcutaneous injection.
        Am J Kidney Dis. 1993; 22: 553-556
        • Frenken L.A.M.
        • Vanlier H.J.J.
        • Koene R.A.P.
        Analysis of the efficacy of measures to reduce pain after subcutaneous administration of epoetin alfa.
        Nephrol Dial Transpl. 1994; 9: 1295-1298
        • Granolleras C.
        • Leskopf W.
        • Shaldon S.
        • Fourcade J.
        Experience of pain after subcutaneous administration of different preparations of recombinant human erythropoietin: a randomized, double-blind crossover study.
        Clin Nephrol. 1991; 36: 294-298
        • St Peter W.L.
        • Lewis M.J.
        • Macres M.G.
        Pain comparison after subcutaneous administration of single-dose formulation versus multidose formulation of epogen in hemodialysis patients.
        Am J Kidney Dis. 1998; 32: 470-474
        • Morris K.P.
        • Hughes C.
        • Hardy S.P.
        • Matthews J.N.S.
        • Coulthard M.G.
        Pain after subcutaneous injection of recombinant human erythropoietin: does EMLA cream help?.
        Nephrol Dial Transpl. 1994; 9: 1299-1301
        • Veys N.
        • Dhondt A.
        • Lameire N.
        Pain at the injection site of subcutaneously administered erythropoietin: phosphate-buffered epoetin alpha compared to citrate-buffered epoetin alpha and epoetin beta.
        Clin Nephrol. 1998; 49: 41-44
        • Veys N.
        • Vanholder R.
        • Lameire N.
        Pain at the injection site of subcutaneous administered erythropoietin in maintenance hemodialysis patients: a comparison of 2 brands of erythropoietin.
        Am J Nephrol. 1992; 12: 68-72
        • Yu A.W.
        • Leung C.B.
        • Li P.K.T.
        • Lui S.F.
        • Lai K.N.
        Pain perception following subcutaneous injections of citrate-buffered and phosphate-buffered epoetin alpha.
        Int J Artif Organs. 1998; 21: 341-343
        • Laursen T.
        • Hansen B.
        • Fisker S.
        Pain perception after subcutaneous injections of media containing different buffers.
        Basic Clin Pharmacol Toxicol. 2006; 98: 218-221
        • Boyce M.J.
        • Warrington S.J.
        A comparison of the discomfort of subcutaneous injections of epoetin beta and phosphate-buffered epoetin alfa.
        Br J Clin Res. 1995; 6: 213-217
        • Veys N.
        • Ringoir S.
        The subcutaneous administration route of epoetin: advantages, pain at the injection site and patient compliance.
        Int J Artif Organs. 1993; 16: 1-3
        • Fransson J.
        • EspanderJansson A.
        Local tolerance of subcutaneous injections.
        J Pharm Pharmacol. 1996; 48: 1012-1015
      27. Zhu G, Lowe K, Shahrokh Z, et al. Methods and compositions for CNS delivery of iduronate-2-sulfatase. US patent 9,220,677; issued December 29, 2015.

        • Klement W.
        • Arndt J.O.
        Pain on i.v. injection of some anaesthtic agents is evoked by the unphysiological osmolality or pH of their formulations.
        Br J Anaesth. 1991; 66: 189-195
        • Mader T.J.
        • Playe S.J.
        • Garb J.L.
        Reducing the pain of local anesthetic infiltration: warming and buffering have a synergistic effect.
        Ann Emerg Med. 1994; 23: 550-554
        • Kinnunen H.M.
        • Mrsny R.J.
        Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical, and physiological properties of the subcutaneous injection site.
        J Control Release. 2014; 182: 22-32
        • Boyce M.J.
        • Warrington S.J.
        A comparison of the discomfort from subcutaneous injection of 4.0 ml vs. 1.0 ml citrate-buffered epoetin alfa.
        Br J Clin Res. 1995; 6: 209-212
        • Nayar R.
        • Manning M.C.
        High throughout formulation: strategies for rapid development of stable protein products.
        in: Rational Design of Stable Protein Formulations: Theory and Practice. Pharmaceutical Biotechnology. Vol. 13. Kluwer Academic/Plenum Publishers, New York2002: 177-198
        • Jørgensen J.T.
        • Rømsing J.
        • Rasmussen M.
        • Møller-Sonnergaard J.
        • Vang L.
        • Musæus L.
        Pain assessment of subcutaneous injections.
        Ann Pharmacother. 1996; 30: 729-732
      28. Relton JM. Concentrated antibody preparation. US patent 6,252,055; issued June 26, 2001.

        • Pourghaznein T.
        • Azimi A.V.
        • Jafarabadi M.A.
        The effect of injection duration and injection site on pain and bruising of subcutaneous injection of heparin.
        J Clin Nurs. 2013; 23: 1105-1113
        • Pannier A.
        • Jordan P.
        • Dougherty F.C.
        • Bour F.
        • Reigner B.
        Subcutaneous injection pain with CERA, a continuous erythropoietin receptor activator, compared with darbepoetin alfa.
        Curr Med Res Opin. 2007; 23: 3025-3032
        • Schmitt C.P.
        • Nau B.
        • Brummer C.
        • Rosenkranz J.
        • Schaefer F.
        Increased injection pain with darbepoetin-α compared to epoetin-β in paediatric dialysis patients.
        Nephrol Dial Transpl. 2006; 21: 3520-3524
        • Gazerani P.
        • Wang K.L.
        • Cairns B.E.
        • Svensson P.
        • Arendt-Nielsen L.
        Effects of subcutaneous administration of glutamate on pain, sensitization and vasomotor responses in healthy men and women.
        Pain. 2006; 124: 338-348
        • Napaporn J.
        • Thomas M.
        • Svetic K.A.
        • Shahrokh Z.
        • Brazeau G.A.
        Assessment of the myotoxicity of pharmaceutical buffers using an in vitro muscle model: effect of pH, capacity, tonicity, and buffer type.
        Pharm Dev Technol. 2000; 5: 123-130
        • Leung A.K.C.
        • Chiu A.S.K.
        • Siu T.O.
        Subcutaneous versus intramuscular administration of Haemophilus influenzae type b vaccine.
        J R Soc Health. 1989; 109: 71-73
        • Newton D.W.
        • Driscoll D.F.
        Calcium and phosphates compatibility: revisited again.
        Am J Health-systems Pharm. 2008; 65: 73-80
        • Newton D.W.
        Drug incompatibility chemistry.
        Am J Health-systems Pharm. 2009; 66: 348-357
        • Daudon M.
        • Frochot V.
        Crystalluria.
        Clin Chem Lab Med. 2015; 53: S1479-S1487
        • Markowtiz G.S.
        • Perazella M.A.
        Acute phosphate nephropathy.
        Kidney Int. 2009; 76: 1027-1034
        • Rej R.
        • Richards A.H.
        Interference by tris buffer in the estimation of protein by the Lowry procedure.
        Anal Biochem. 1974; 62: 240-247
        • Vankley H.
        • Bartholo D.
        Interference by tris and other buffers in Lowry assay for protein.
        Fed Proc. 1969; 28: 867
        • Tan A.
        • Benetton S.
        • Henion J.D.
        Chip-based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate.
        Anal Chem. 2003; 75: 5504-5511
        • Zheng J.J.
        • Lynch E.D.
        • Unger S.E.
        Comparison of SPE and fast LC to eliminate mass spectrometric matrix effects from microsomal incubation products.
        J Pharm Biomed Anal. 2002; 28: 279-285
        • Shieh I.F.
        • Lee C.Y.
        • Shiea J.
        Eliminating the interferences from TRIS buffer and SDS in protein analysis by fused droplet electrospray ionization mass spectrometry.
        J Proteome Res. 2005; 4: 606-612
        • Han C.
        • Chan Z.
        • Yang F.
        Comparative analyses of universal extraction buffers for assay of stress related biochemical and physiological parameters.
        Prep Biochem Biotechnol. 2015; 45: 684-695
        • Strang C.J.
        • Wales M.E.
        • Brown D.M.
        • Wild J.R.
        Site-directed alterations to the geometry of the aspartate transcarbamoylase zinc domain: selective alteration to regulation by heterotropic ligands, isoelectric point, and stability in urea.
        Biochemistry. 1993; 32: 4156-4167