Advertisement

Design and Investigation of Penetrating Mechanism of Octaarginine-Modified Alginate Nanoparticles for Improving Intestinal Insulin Delivery

      Abstract

      The aim of the study is to design octaarginine (R8)-modified insulin-alginate nanoparticles (INS-SA/R8 NPs) as the oral insulin delivery system, and further investigate its penetrating mechanism. The characterization results indicated that the surface of INS-SA/R8 NPs was smooth and the average diameter was about 300 nm. INS-SA/R8 NPs exhibited a stronger stability in the simulated gastrointestinal fluids and had a better controlled release than unmodified alginate nanoparticles (INS-SA NPs). Moreover, INS-SA/R8 NPs group had the strongest insulin transport capacity and the largest amount of insulin uptake in all experimental groups. Most importantly, the improvement of insulin intestinal uptake was further confirmed in rat intestine in vivo, and its penetrating mechanism might be involved in the production of endogenous nitric oxide (NO) signal molecule. In addition, in vivo hypoglycemic studies showed that orally administrated INS-SA/R8 NPs produced a better hypoglycemic effect as compared with INS-SA NPs in diabetic rats. Meanwhile, from the cytotoxicity analysis, INS-SA/R8 NPs were safe for oral administration. Taken together, INS-SA/R8 NPs was a good oral insulin delivery system, which might also be suitable for other protein drugs.

      Keywords

      Abbreviations:

      CLSM (confocal laser scanning microscopy), CPP (cell penetrating peptide), DAF-FM DA (4-Amino-5-Methylamino-2,7-Difluorofluorescein Diacetate), EDTA (ethylenediaminetetraacetic acid), EE (encapsulation efficiency), F-insulin (insulin labeled with fluorescein isothiocyanate), FITC (fluorescein isothiocyanate), HBSS (hank's balanced salt solution), INS-SA NPs (sodium alginate loaded insulin nanoparticles), INS-SA/R8 NPs (R8 modified sodium alginate loaded insulin nanoparticles), LD (loading degree), LSD (Low-Salt Diet), M-β-CD (methyl-β- cyclodextrin), MTT (methyl tetrazolium), MUC (mucin), NSD (Normal-Salt Diet), O.C.T. (Optimal Cutting Temperature), PdI (polydispersity index), R8 (RRRRRRRR), SA NPs (sodium alginate nanoparticles), SA/R8 NPs (R8 modified sodium alginate nanoparticles), SGF (simulated gastric fluid), SIF (simulated intestinal fluid), TEER (transepithelial electrical resistance), TEM (transmission electron microscopy)
      To read this article in full you will need to make a payment
      APhA Member Login
      APhA Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fan W.
        • Xia D.
        • Zhu Q.
        • et al.
        Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery.
        Biomaterials. 2018; 151: 13-23
        • Moroz E.
        • Matoori S.
        • Leroux J.C.
        Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts.
        Adv Drug Deliv Rev. 2016; 101: 108-121
        • Maher S.
        • Mrsny R.J.
        • Brayden D.J.
        Intestinal permeation enhancers for oral peptide delivery.
        Adv Drug Deliv Rev. 2016; 106: 277-319
        • Aguirre T.A.
        • Teijeiro-Osorio D.
        • Rosa M.
        • Coulter I.S.
        • Alonso M.J.
        • Brayden D.J.
        Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials.
        Adv Drug Deliv Rev. 2016; 106: 223-241
        • Wong C.Y.
        • Al-Salami H.
        • Dass C.R.
        Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment.
        J Control Release. 2017; 264: 247-275
        • Li X.
        • Fu M.
        • Wu J.
        • et al.
        PH-sensitive peptide hydrogel for glucose-responsive insulin delivery.
        Acta Mater. 2017; 51: 294-303
        • Presas E.
        • McCartney F.
        • Sultan E.
        • et al.
        Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin.
        J Control Release. 2018; 286: 402-414
        • Aditi B.
        • Debarati M.
        • Roshnara M.
        • Kundua P.P.
        Preparation of polyurethane–alginate/chitosan core shell nanoparticles for the purpose of oral insulin delivery.
        Eur Polym J. 2017; 92: 294-313
        • Aditi B.
        • Piyasi M.
        • Nilkamal P.
        • Patit P.K.
        Effect of polyethylene glycol on bis(2-hydroxyethyl) terephthalate-based polyurethane/alginate ph-sensitive blend for oral protein delivery.
        Adv Polym Technol. 2016; 35: 1-11
        • Aluani D.
        • Tzankova V.
        • Kondeva-Burdina M.
        • et al.
        Evaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin.
        Int J Biol Macromol. 2017; 103: 771-782
        • Mokhtari S.
        • Jafari S.M.
        • Assadpour E.
        Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate.
        Food Chem. 2017; 229: 286-295
        • Boegh M.
        • Nielsen H.M.
        Mucus as a barrier to drug delivery–understanding and mimicking the barrier properties.
        Basic Clin Pharmacol Toxicol. 2015; 116: 179-186
        • Tashima T.
        Intelligent substance delivery into cells using cell-penetrating peptides.
        Bioorg Med Chem Lett. 2017; 27: 121-130
        • Boisguérin P.
        • Deshayes S.
        • Gait M.J.
        • et al.
        Delivery of therapeutic oligonucleotides with cell penetrating peptides.
        Adv Drug Deliv Rev. 2015; 87: 52-67
        • Nakase I.
        • Akita H.
        • Kogure K.
        • et al.
        Efficient intracellular delivery of nucleic acid pharmaceuticals using cell- penetrating peptides.
        Acc Chem Res. 2012; 45: 1132-1139
        • Kurrikoff K.
        • Gestin M.
        • Langel Ü.
        Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opin.
        Drug Deliv. 2016; 13: 373-387
        • Liu X.
        • Liu C.
        • Zhang W.
        • Xie C.
        • Wei G.
        • Lu W.
        Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin.
        Int J Pharm. 2013; 448: 159-167
        • Kaplan I.M.
        • Wadia J.S.
        • Dowdy S.F.
        Cationic TAT peptide transduction domain enters cells by micropinocytosis.
        J Control Release. 2005; 102: 247-253
        • Ikuhiko N.
        • Miki N.
        • Toshihide T.
        • et al.
        Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement.
        Mol Ther. 2004; 10: 1011-1022
        • Kosuge M.
        • Takeuchi T.
        • Nakase I.
        • Jones A.T.
        • Futaki S.
        Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans.
        Bioconjug Chem. 2008; 19: 656-664
        • Lopes M.
        • Shrestha N.
        • Correia A.
        • et al.
        Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin.
        J Control Release. 2016; 232: 29-41
        • Li L.
        • Yang L.
        • Li M.
        • Zhang L.
        A cell-penetrating peptide mediated chitosan nanocarriers for improving intestinal insulin delivery.
        Carbohydr Polym. 2017; 174: 182-189
        • Mostafa B.
        • Firouz E.
        • Shahram N.
        • Jamil Z.
        • Faeze B.
        • Dawood S.G.
        Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: in vitro characterization.
        Biologicals. 2017; 49: 69-75
        • Santos P.S.
        • Caria C.R.P.
        • Gotardo E.M.F.
        • Ribeiro M.L.
        • Pedrazzoli J.
        • Gambero A.
        Artificial sweetener saccharin disrupts intestinal epithelial cells' barrier function in vitro.
        Food Funct. 2018; 9: 3815-3822
        • Sheng J.
        • Han L.
        • Qin J.
        • et al.
        N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption.
        ACS Appl Mater Interfaces. 2015; 7: 15430-15441
        • Wang J.
        • Kong M.
        • Zhou Z.
        • et al.
        Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery.
        Carbohydr Polym. 2017; 157: 596-602
        • Jin Y.
        • Song Y.
        • Zhu X.
        • et al.
        Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport.
        Biomaterials. 2012; 33: 1573-1582
        • Zhang X.
        • Cheng H.
        • Dong W.
        • et al.
        Design and intestinal mucus, penetration mechanism of core-shell nanocomplex.
        J Control Release. 2018; 272: 29-38
        • Bruno S.
        • Domingos F.
        • Francisco V.
        • Antoánio R.
        Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies.
        Carbohydr Polym. 2006; 66: 1-7
        • Lim H.
        • Ooi C.
        • Tey B.
        • Chan E.
        Controlled delivery of oral insulin aspart using pH-responsive alginate/κ- carrageenan composite hydrogel beads.
        React Funct Polym. 2017; 120: 20-29
        • Srinivasan B.
        • Kolli A.R.
        • Esch M.B.
        • Abaci H.E.
        • Shuler M.L.
        • Hickman J.J.
        TEER measurement techniques for in vitro barrier model systems.
        J Lab Autom. 2015; 20: 107-126
        • Lin Y.H.
        • Chung C.K.
        • Chen C.T.
        • Liang H.F.
        • Chen S.C.
        • Sung H.W.
        Preparation of nanoparticles composed of chitosan/poly-ç-glutamic acid and evaluation of their permeability through caco-2 cells.
        Biomacromolecules. 2005; 6: 1104-1112
        • Yang L.
        • Li M.
        • Sun Y.
        • Zhang L.
        A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin.
        Int J Biol Macromol. 2018; 111: 685-695
        • Watkins C.
        • Schmaljohann D.
        • Futaki S.
        • Jones A.
        Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide.
        Biochem J. 2009; 420: 179-189
        • Takeuchi T.
        • Futaki S.
        Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms.
        Chem Pharm Bull. 2016; 64: 1431-1437
        • Nathan C.
        Nitric oxides as a secretory product of mammalian cells.
        FASEB J. 1992; 6: 3051-3064
        • Fetih G.
        • Habib F.
        • Okada N.
        • Fujita T.
        • Attia M.
        • Yamamoto A.
        Nitric oxide donors can enhance the intestinal transport and absorption of insulin and [Asu1,7]-eel calcitonin in rats.
        J Control Release. 2005; 106: 287-297
        • Sevda G.
        • Fatemeh B.
        • Sajad J.
        • Khadijeh F.
        • Homeira Z.
        • Asghar G.
        Nitrite increases glucose-stimulated insulin secretion and islet insulin content in obese type 2 diabetic male rats.
        Nitric Oxide. 2017; 64: 39-51
        • Yusuke T.
        • Hisanao K.
        • Takuya K.
        • et al.
        Characteristics of reversible absorption-enhancing effect of sodium nitroprusside in rat small intestine.
        Eur J Pharm Sci. 2013; 49: 664-670
        • Dong B.
        • Wang C.
        • Guo X.
        • et al.
        Hypoglycemic effects of sodium alginate-insulin nanoparticles on the blood glucose level of streptozotocin-induced diabetic Wistar rats.
        Med J Chin PLA. 2005; 30 (in Chinese): 590-592