Advertisement
Research Article Pharmacokinetics, Pharmacodynamics and Drug Transport and Metabolism| Volume 110, ISSUE 1, P510-516, January 01, 2021

A Simple Decision Tree Suited for Identification of Early Oral Drug Candidates With Likely Pharmacokinetic Nonlinearity by Intestinal CYP3A Saturation

Published:October 30, 2020DOI:https://doi.org/10.1016/j.xphs.2020.10.050

      Abstract

      To identify oral drugs that likely display nonlinear pharmacokinetics due to saturable metabolism by intestinal CYP3A, our previous report using CYP3A substrate drugs proposed an approach using thresholds for the linear index number (LIN3A = dose/Km; Km, Michaelis-Menten constant for CYP3A) and the intestinal availability (FaFg). Here, we aimed to extend the validity of the previous approach using both CYP3A substrate and non-substrate drugs and to devise a decision tree suited for early drug candidates using in vitro metabolic intrinsic clearance (CLint, vitro) instead of FaFg. Out of 152 oral drugs (including 136 drugs approved in Japan, US or both), type I nonlinearity (in which systemic drug exposure increases in a more than dose-proportional manner) was noted with 82 drugs (54%), among which 58 drugs were identified as CYP3A substrates based on public information. Based on practical feasibility, 41 drugs were selected from CYP3A substrates and subjected to in-house metabolic assessment. The results were used to determine the thresholds for CLint, vitro (0.45 μL/min/pmol CYP3A4) and LIN3A (1.0 L). For four drugs incorrectly predicted, potential mechanisms were looked up. Overall, our proposed decision tree may aid in the identification of early drug candidates with intestinal CYP3A-derived type I nonlinearity.

      Keywords

      To read this article in full you will need to make a payment
      APhA Member Login
      APhA Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lappin G.
        • Noveck R.
        • Burt T.
        Microdosing and drug development: past, present and future.
        Expert Opin Drug Metab Toxicol. 2013; 9: 817-834
        • Bosgra S.
        • Vlaming M.L.
        • Vaes W.H.
        To apply microdosing or not? Recommendations to single out compounds with non-linear pharmacokinetics.
        Clin Pharmacokinet. 2016; 55: 1-15
        • Canaparo R.
        • Finnström N.
        • Serpe L.
        • Nordmark A.
        • Muntoni E.
        • Eandi M.
        • et al.
        Expression of CYP3A isoforms and P-glycoprotein in human stomach, jejunum and ileum.
        Clin Exp Pharmacol Physiol. 2007; 34: 1138-1144
        • Berggren S.
        • Gall C.
        • Wollnitz N.
        • Ekelund M.
        • Karlbom U.
        • Hoogstraate J.
        • et al.
        Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine.
        Mol Pharm. 2007; 4: 252-257
        • Tachibana T.
        • Kato M.
        • Sugiyama Y.
        Prediction of nonlinear intestinal absorption of CYP3A4 and P-glycoprotein substrates from their in vitro Km values.
        Pharm Res. 2012; 29: 651-668
        • Imawaka H.
        • Ito K.
        • Kitamura Y.
        • Sugyama K.
        • Sugiyama Y.
        Prediction of human bioavailability from human oral administration data and animal pharmacokinetic data without data from intravenous administration of drugs in humans.
        Pharm Res. 2009; 26: 1881-1889
        • Cyong J.C.
        • Kodama K.
        • Yafune A.
        • Takebe M.
        • Takayanagi H.
        Phase I study of azithromycin single dose and multiple-dose for 3 days-.
        Jpn J Chemother. 1995; 43: 139-163
        • Nakashima M.
        • Kanamaru M.
        • Takiguchi Y.
        • Mizuno A.
        • Watanabe I.
        Phase I study of betaxolol hydrochloride (MCI-144).
        J Clin Ther Med. 1989; 5: 1349-1382
        • Nilsen O.G.
        • Dale O.
        • Husebø B.
        Pharmacokinetics of trazodone during multiple dosing to psychiatric patients.
        Pharmacol Toxicol. 1993; 72: 286-289
        • Sahajwalla C.G.
        • Ayres J.W.
        Multiple-dose acetaminophen pharmacokinetics.
        J Pharm Sci. 1991; 80: 855-860
        • Bornemann L.D.
        • Min B.H.
        • Crews T.
        • Rees M.M.
        • Blumenthal H.P.
        • Colburn W.A.
        • et al.
        Dose dependent pharmacokinetics of midazolam.
        Eur J Clin Pharmacol. 1985; 29: 91-95
        • Lacey L.F.
        • Hussey E.K.
        • Fowler P.A.
        Single dose pharmacokinetics of sumatriptan in healthy volunteers.
        Eur J Clin Pharmacol. 1995; 47: 543-548
        • Kato M.
        Intestinal first-pass metabolism of CYP3A4 substrates.
        Drug Metab Pharmacokinet. 2008; 23: 87-94
        • Rowland Yeo K.
        • Rostami-Hodjegan A.
        • Tucker G.T.
        Abundance of cytochromes P450 in human liver: a meta-analysis. 225P GKT, University of London Winter meeting December 2003.
        (Available at:)
        • Iwatsubo T.
        • Hirota N.
        • Ooie T.
        • Suzuki H.
        • Shimada N.
        • Chiba K.
        • et al.
        Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data.
        Pharmacol Ther. 1997; 73: 147-171
        • Davies B.
        • Morris T.
        Physiological parameters in laboratory animals and humans.
        Pharm Res. 1993; 10: 1093-1095
        • Takusagawa S.
        • Ushigome F.
        • Nemoto H.
        • Takahashi Y.
        • Li Q.
        • Kerbusch V.
        • et al.
        Intestinal absorption mechanism of mirabegron, a potent and selective β₃-adrenoceptor agonist: involvement of human efflux and/or influx transport systems.
        Mol Pharm. 2013; 10: 1783-1794
      1. Common technical document of maraviroc for new drug application in Japan.
        (Available at:)
        • Walker D.K.
        • Abel S.
        • Comby P.
        • Muirhead G.J.
        • Nedderman A.N.R.
        • Smith D.A.
        Species differences in the disposition of the CCR5 antagonist, UK-427,857, a new potential treatment for HIV.
        Drug Metab Dispos. 2005; 33: 587-595
        • Kimoto E.
        • Vourvahis M.
        • Scialis R.J.
        • Eng H.
        • Rodorigues A.D.
        • Varma M.V.S.
        Mechanistic evaluation of the complex drug-drug interactions of maraviroc: contribution of cytochrome P450 3A, P-glycoprotein and organic anion transporting polypeptide 1B1.
        Drug Metab Dispos. 2019; 47: 493-503
      2. Common technical document of voriconazole for new drug application in Japan.
        (Available at:) (In Japanese)
        • Murayama N.
        • Imai N.
        • Nakane T.
        • Shimizu M.
        • Yamazaki H.
        Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes.
        Biochem Pharmacol. 2007; 73: 2020-2026
        • Damle B.
        • Varma M.V.
        • Wood N.
        Pharmacokinetics of voriconazole administered concomitantly with fluconazole and population-based simulation for sequential use.
        Antimicrob Agents Chemother. 2011; 55: 5172-5177
        • Hyland R.
        • Jones B.C.
        • Smith D.A.
        Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole.
        Drug Metab Dispos. 2003; 31: 540-547
        • Qi F.
        • Zhu L.
        • Li Na
        • Ge T.
        • Xu G.
        • Liao S.
        Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole.
        Int J Antimicrob Agents. 2017; 49: 403-409
        • Suzuki R.
        • Satoh H.
        • Ohtani H.
        • Hori S.
        • Sawada Y.
        Saturable binding of finasteride to steroid 5α-reductase as determinant of nonlinear pharmacokinetics.
        Drug Metab Pharmacokinet. 2010; 25: 208-213
        • Levy G.
        Pharmacologic target-mediated drug disposition.
        Clin Pharmacol Ther. 1994; 56: 248-252
        • Mager D.E.
        • Jusko W.J.
        General pharmacokinetic model for drugs exhibiting target-mediated drug disposition.
        J Pharmacokinet Pharmacodyn. 2001; 28: 507-532
        • Tseng E.
        • Fate G.D.
        • Walker G.S.
        • Goosen T.C.
        • Obach R.S.
        Biosynthesis and identification of metabolites of maraviroc and their use in experiments to delineate the relative contributions of cytochrome P450 3A4 versus 3A5.
        Drug Metab Dispos. 2018; 46: 493-502
        • Hyland R.
        • Dickins M.
        • Collins C.
        • Jones H.
        • Jones B.
        Maraviroc: in vitro assessment of drug-drug interaction potential.
        Br J Clin Pharmacol. 2008; 66: 498-507
        • Lu Y.
        • Hendrix C.W.
        • Bumpus N.N.
        Cytochrome P450 3A5 plays a prominent role in the oxidative metabolism of the anti-human immunodeficiency virus drug maraviroc.
        Drug Metab Dispos. 2012; 40: 2221-2230
        • Roffey S.J.
        • Cole S.
        • Comby P.
        • Gibson D.
        • Jezequel S.G.
        • Nedderman A.N.R.
        • et al.
        The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human.
        Drug Metab Dispos. 2003; 31: 731-741