Advertisement

Disintegrant Selection in Hydrophobic Tablet Formulations

Published:November 09, 2020DOI:https://doi.org/10.1016/j.xphs.2020.11.002

      Abstract

      The hydrophobicity of poorly soluble drugs can delay tablets disintegration. We probed here the influence of different disintegrants on the disintegration of challenging hydrophobic formulations. Tablets containing diluents, hydrogenated vegetable oil and either sodium starch glycolate (SSG), croscarmellose sodium (CCS) or crospovidone (XPVP) were prepared. The disintegration time of tablets was tested immediately and after storage at 40 °C and 75% RH in sealed bags. Results show that storage and compression force had a negative effect on disintegration, particularly with 1% disintegrant. The performance of the three disintegrants was in the following order: CCS (best) > SSG > XPVP. For example, tablets containing 1% CCS, SSG and XPVP, compressed at 20 kN, disintegrated in ≈3, ≈12 and ≈69 min, respectively, after two months storage. Settling volume, liquid uptake and effect of storage on physical properties of the pure disintegrants were also studied and revealed that the reduced performance of XPVP is related to: 1) its rapid, yet short-range expansion upon liquid exposure and 2) its change of behaviour on storage. In conclusion, CCS ensured rapid disintegration at low concentration across various compression forces and storage times. Thus, the use of CCS in hydrophobic tablet formulations is recommended.
      To read this article in full you will need to make a payment
      APhA Member Login
      APhA Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Markl D.
        • Zeitler J.A.
        A review of disintegration mechanisms and measurement techniques.
        Pharm Res. 2017; 34: 890-917https://doi.org/10.1007/s11095-017-2129-z
        • Amidon G.G.L.
        • Lennernäs H.
        • Shah V.P.V.
        • Crison J.R.J.
        A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability.
        Pharm Res. 1995; 12 (Available at:): 413-420
        • Dokoumetzidis A.
        • Macheras P.
        A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system.
        Int J Pharm. 2006; 321: 1-11https://doi.org/10.1016/j.ijpharm.2006.07.011
        • Desai P.M.
        • Liew C.V.
        • Heng P.W.S.
        Review of disintegrants and the disintegration phenomena.
        J Pharm Sci. 2016; 105: 2545-2555https://doi.org/10.1016/j.xphs.2015.12.019
        • Zhao N.
        • Augsburger L.L.
        The influence of swelling capacity of superdisintegrants in different pH media on the dissolution of hydrochlorothiazide from directly compressed tablets.
        AAPS PharmSciTech. 2005; 6: E120-E126https://doi.org/10.1208/pt060119
        • Tomas J.
        • Schöngut M.
        • Dammer O.
        • Beránek J.
        • Zadražil A.
        • Štěpánek F.
        Probing the early stages of tablet disintegration by stress relaxation measurement.
        Eur J Pharm Sci. 2018; 124: 145-152
        • Chaheen M.
        • Soulairol I.
        • Bataille B.
        • Yassine A.
        • Belamie E.
        • Sharkawi T.
        Chitin's functionality as a novel disintegrant: benchmarking against commonly used disintegrants in different physicochemical environments.
        J Pharm Sci. 2017; 106: 1839-1848https://doi.org/10.1016/j.xphs.2017.03.037
        • Bisharat L.
        • AlKhatib H.S.
        • Muhaissen S.
        • et al.
        The influence of ethanol on superdisintegrants and on tablets disintegration.
        Eur J Pharm Sci. 2019; 129: 140-147https://doi.org/10.1016/j.ejps.2019.01.004
        • Zaheer K.
        • Langguth P.
        Designing robust immediate release tablet formulations avoiding food effects for BCS class 3 drugs.
        Eur J Pharm Biopharm. 2019; 139: 177-185
        • Basaleh S.
        • Bisharat L.
        • Cespi M.
        • Berardi A.
        Temperature: an overlooked factor in tablet disintegration.
        Eur J Pharm Sci. 2020; 151: 105388https://doi.org/10.1016/j.ejps.2020.105388
        • Rojas J.
        • Guisao S.
        • Ruge V.
        Functional assessment of four types of disintegrants and their effect on the spironolactone release properties.
        AAPS PharmSciTech. 2012; 13: 1054-1062https://doi.org/10.1208/s12249-012-9835-y
        • Desai P.M.
        • Er P.X.H.
        • Liew C.V.
        • Heng P.W.S.
        Functionality of disintegrants and their mixtures in enabling fast disintegration of tablets by a quality by design approach.
        AAPS PharmSciTech. 2014; 15: 1093-1104https://doi.org/10.1208/s12249-014-0137-4
        • Ganderton D.
        • Fraser D.R.
        Some observations of the penetration and disruption of tablets by water.
        J Pharm Pharmacol. 1970; 22: 95S-103Shttps://doi.org/10.1111/j.2042-7158.1970.tb08586.x
        • Jivraj M.
        • Martini L.G.
        • Thomson C.M.
        An overview of the different excipients useful for the direct compression of tablets.
        Pharm Sci Technolo Today. 2000; 3: 58-63https://doi.org/10.1016/S1461-5347(99)00237-0
        • Markl D.
        • Sauerwein J.
        • Goodwin D.J.
        • van den Ban S.
        • Zeitler J.A.
        Non-destructive determination of disintegration time and dissolution in immediate release tablets by terahertz transmission measurements.
        Pharm Res. 2017; 34: 1012-1022https://doi.org/10.1007/s11095-017-2108-4
        • Quodbach J.
        • Kleinebudde P.
        A critical review on tablet disintegration.
        Pharm Dev Technol. 2016; 21: 763-774https://doi.org/10.3109/10837450.2015.1045618
        • Alderborn G.
        Tablets and compaction.
        in: Aulton M.E. Aulton's Pharmaceutics: The Design and Manufacture of Medicines. fourth ed. Churcill Livingstone, 2013: 504-549
        • Kalepu S.
        • Nekkanti V.
        Insoluble drug delivery strategies: review of recent advances and business prospects.
        Acta Pharm Sin B. 2015; 5: 442-453https://doi.org/10.1016/j.apsb.2015.07.003
        • Yang S.
        • Fu Y.
        • Jeong S.H.
        • Park K.
        Application of poly (acrylic acid) superporous hydrogel microparticles as a super-disintegrant in fast-disintegrating tablets.
        J Pharm Pharmacol. 2004; 56: 429-436
        • Berardi A.
        • Bisharat L.
        • Blaibleh A.
        • Pavoni L.
        • Cespi M.
        A simple and inexpensive image analysis technique to study the effect of disintegrants concentration and diluents type on disintegration.
        J Pharm Sci. 2018; 107: 2643-2652https://doi.org/10.1016/j.xphs.2018.06.008
        • Desai P.M.
        • Liew C.V.
        • Heng P.W.S.
        Understanding disintegrant action by visualization.
        J Pharm Sci. 2012; 101: 2155-2164https://doi.org/10.1002/jps.23119
        • Thibert R.
        • Hancock B.C.
        Direct visualization of superdisintegrant hydration using environmental scanning electron microscopy.
        J Pharm Sci. 1996; 85: 1255-1258https://doi.org/10.1021/js960188d
        • Hersen-Delesalle C.
        • Leclerc B.
        • Couarraze G.
        • Busignies V.
        • Tchoreloff P.
        The effects of relative humidity and super-disintegrant concentrations on the mechanical properties of pharmaceutical compacts.
        Drug Dev Ind Pharm. 2007; 33: 1297-1307https://doi.org/10.1080/03639040701384918
        • Hiew T.N.
        • Johan N.A.B.
        • Desai P.M.
        • Chua S.M.
        • Loh Z.H.
        • Heng P.W.S.
        Effect of moisture sorption on the performance of crospovidone.
        Int J Pharm. 2016; 514: 322-331https://doi.org/10.1016/j.ijpharm.2016.06.022
        • Sacchetti M.
        • Teerakapibal R.
        • Kim K.
        • Elder E.J.
        Role of water sorption in tablet crushing strength, disintegration, and dissolution.
        AAPS PharmSciTech. 2017; 18: 2214-2226https://doi.org/10.1208/s12249-016-0699-4
        • Quodbach J.
        • Moussavi A.
        • Tammer R.
        • Frahm J.
        • Kleinebudde P.
        Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.
        J Pharm Sci. 2014; 103: 249-255https://doi.org/10.1002/jps.23789
        • Quodbach J.
        • Kleinebudde P.
        Performance of tablet disintegrants: impact of storage conditions and relative tablet density.
        Pharm Dev Technol. 2014; 20: 762-768https://doi.org/10.3109/10837450.2014.920357
        • Wang J.T.
        • Shiu G.K.
        • Ting O.-C.
        • Viswanathan C.T.
        • Skelly J.P.
        Effects of humidity and temperature on in vitro dissolution of carbamazepine tablets.
        J Pharm Sci. 1993; 82: 1002-1005https://doi.org/10.1002/jps.2600821004
        • Kadir S.
        • Yata N.
        • Kawata M.
        • Goto S.
        Effect of humidity aging on disintegration, dissolution and cumulative urinary excretion of calcium p-aminosalicylate formulations.
        Chem Pharm Bull (Tokyo). 1986; 34: 5102-5109
        • Rowe R.C.
        • Sheskey P.J.
        • Quinn M.E.
        • Association A.P.
        • Press P.
        Handbook of Pharmaceutical Excipients. vol. 6. Pharmaceutical Press, London2009
        • Edge S.
        • Steele D.F.
        • Staniforth J.N.
        • Chen A.
        • Woodcock P.M.
        Powder compaction properties of sodium starch glycolate disintegrants.
        Drug Dev Ind Pharm. 2002; 28: 989-999https://doi.org/10.1081/ddc-120006430
        • Bele M.H.
        • Derle D.V.
        Mechanism of disintegrant action of polacrilin potassium: swelling or wicking?.
        Acta Pharm Sin B. 2012; 2: 70-76https://doi.org/10.1016/j.apsb.2011.12.002
        • Berardi A.
        • Bisharat L.
        • Cespi M.
        • et al.
        Controlled release properties of zein powder filled into hard gelatin capsules.
        Powder Technol. 2017; 320https://doi.org/10.1016/j.powtec.2017.07.093
        • Cabiscol R.
        • Finke J.H.
        • Zetzener H.
        • Kwade A.
        Characterization of mechanical property distributions on tablet surfaces.
        Pharmaceutics. 2018; 10https://doi.org/10.3390/pharmaceutics10040184
        • Jozwiakowski M.J.
        • Jones D.M.
        • Franz R.M.
        Characterization of a hot-melt fluid bed coating process for fine granules.
        Pharm Res. 1990; 7: 1119-1126https://doi.org/10.1023/a:1015972007342
        • Quodbach J.
        • Kleinebudde P.
        A new apparatus for real-time assessment of the particle size distribution of disintegrating tablets.
        J Pharm Sci. 2014; 103: 3657-3665https://doi.org/10.1002/jps.24168
        • Caramella C.
        • Colombo P.
        • Conte U.
        • et al.
        Water uptake and disintegrating force measurements: towards a general understanding of disintegration mechanisms.
        Drug Dev Ind Pharm. 1986; 12: 1749-1766
        • JRS Pharma
        Manufacturer website.
        (Available at:)
        • Quodbach J.
        • Kleinebudde P.
        Systematic classification of tablet disintegrants by water uptake and force development kinetics.
        J Pharm Pharmacol. 2014; 66: 1429-1438https://doi.org/10.1111/jphp.12276